regex/regex/string.rs
1use alloc::{borrow::Cow, string::String, sync::Arc};
2
3use regex_automata::{meta, util::captures, Input, PatternID};
4
5use crate::{error::Error, RegexBuilder};
6
7/// A compiled regular expression for searching Unicode haystacks.
8///
9/// A `Regex` can be used to search haystacks, split haystacks into substrings
10/// or replace substrings in a haystack with a different substring. All
11/// searching is done with an implicit `(?s:.)*?` at the beginning and end of
12/// an pattern. To force an expression to match the whole string (or a prefix
13/// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`).
14///
15/// While this crate will handle Unicode strings (whether in the regular
16/// expression or in the haystack), all positions returned are **byte
17/// offsets**. Every byte offset is guaranteed to be at a Unicode code point
18/// boundary. That is, all offsets returned by the `Regex` API are guaranteed
19/// to be ranges that can slice a `&str` without panicking. If you want to
20/// relax this requirement, then you must search `&[u8]` haystacks with a
21/// [`bytes::Regex`](crate::bytes::Regex).
22///
23/// The only methods that allocate new strings are the string replacement
24/// methods. All other methods (searching and splitting) return borrowed
25/// references into the haystack given.
26///
27/// # Example
28///
29/// Find the offsets of a US phone number:
30///
31/// ```
32/// use regex::Regex;
33///
34/// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}").unwrap();
35/// let m = re.find("phone: 111-222-3333").unwrap();
36/// assert_eq!(7..19, m.range());
37/// ```
38///
39/// # Example: extracting capture groups
40///
41/// A common way to use regexes is with capture groups. That is, instead of
42/// just looking for matches of an entire regex, parentheses are used to create
43/// groups that represent part of the match.
44///
45/// For example, consider a haystack with multiple lines, and each line has
46/// three whitespace delimited fields where the second field is expected to be
47/// a number and the third field a boolean. To make this convenient, we use
48/// the [`Captures::extract`] API to put the strings that match each group
49/// into a fixed size array:
50///
51/// ```
52/// use regex::Regex;
53///
54/// let hay = "
55/// rabbit 54 true
56/// groundhog 2 true
57/// does not match
58/// fox 109 false
59/// ";
60/// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$").unwrap();
61/// let mut fields: Vec<(&str, i64, bool)> = vec![];
62/// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) {
63/// fields.push((f1, f2.parse()?, f3.parse()?));
64/// }
65/// assert_eq!(fields, vec![
66/// ("rabbit", 54, true),
67/// ("groundhog", 2, true),
68/// ("fox", 109, false),
69/// ]);
70///
71/// # Ok::<(), Box<dyn std::error::Error>>(())
72/// ```
73///
74/// # Example: searching with the `Pattern` trait
75///
76/// **Note**: This section requires that this crate is compiled with the
77/// `pattern` Cargo feature enabled, which **requires nightly Rust**.
78///
79/// Since `Regex` implements `Pattern` from the standard library, one can
80/// use regexes with methods defined on `&str`. For example, `is_match`,
81/// `find`, `find_iter` and `split` can, in some cases, be replaced with
82/// `str::contains`, `str::find`, `str::match_indices` and `str::split`.
83///
84/// Here are some examples:
85///
86/// ```ignore
87/// use regex::Regex;
88///
89/// let re = Regex::new(r"\d+").unwrap();
90/// let hay = "a111b222c";
91///
92/// assert!(hay.contains(&re));
93/// assert_eq!(hay.find(&re), Some(1));
94/// assert_eq!(hay.match_indices(&re).collect::<Vec<_>>(), vec![
95/// (1, "111"),
96/// (5, "222"),
97/// ]);
98/// assert_eq!(hay.split(&re).collect::<Vec<_>>(), vec!["a", "b", "c"]);
99/// ```
100#[derive(Clone)]
101pub struct Regex {
102 pub(crate) meta: meta::Regex,
103 pub(crate) pattern: Arc<str>,
104}
105
106impl core::fmt::Display for Regex {
107 /// Shows the original regular expression.
108 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
109 write!(f, "{}", self.as_str())
110 }
111}
112
113impl core::fmt::Debug for Regex {
114 /// Shows the original regular expression.
115 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
116 f.debug_tuple("Regex").field(&self.as_str()).finish()
117 }
118}
119
120impl core::str::FromStr for Regex {
121 type Err = Error;
122
123 /// Attempts to parse a string into a regular expression
124 fn from_str(s: &str) -> Result<Regex, Error> {
125 Regex::new(s)
126 }
127}
128
129impl TryFrom<&str> for Regex {
130 type Error = Error;
131
132 /// Attempts to parse a string into a regular expression
133 fn try_from(s: &str) -> Result<Regex, Error> {
134 Regex::new(s)
135 }
136}
137
138impl TryFrom<String> for Regex {
139 type Error = Error;
140
141 /// Attempts to parse a string into a regular expression
142 fn try_from(s: String) -> Result<Regex, Error> {
143 Regex::new(&s)
144 }
145}
146
147/// Core regular expression methods.
148impl Regex {
149 /// Compiles a regular expression. Once compiled, it can be used repeatedly
150 /// to search, split or replace substrings in a haystack.
151 ///
152 /// Note that regex compilation tends to be a somewhat expensive process,
153 /// and unlike higher level environments, compilation is not automatically
154 /// cached for you. One should endeavor to compile a regex once and then
155 /// reuse it. For example, it's a bad idea to compile the same regex
156 /// repeatedly in a loop.
157 ///
158 /// # Errors
159 ///
160 /// If an invalid pattern is given, then an error is returned.
161 /// An error is also returned if the pattern is valid, but would
162 /// produce a regex that is bigger than the configured size limit via
163 /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by
164 /// default.)
165 ///
166 /// # Example
167 ///
168 /// ```
169 /// use regex::Regex;
170 ///
171 /// // An Invalid pattern because of an unclosed parenthesis
172 /// assert!(Regex::new(r"foo(bar").is_err());
173 /// // An invalid pattern because the regex would be too big
174 /// // because Unicode tends to inflate things.
175 /// assert!(Regex::new(r"\w{1000}").is_err());
176 /// // Disabling Unicode can make the regex much smaller,
177 /// // potentially by up to or more than an order of magnitude.
178 /// assert!(Regex::new(r"(?-u:\w){1000}").is_ok());
179 /// ```
180 pub fn new(re: &str) -> Result<Regex, Error> {
181 RegexBuilder::new(re).build()
182 }
183
184 /// Returns true if and only if there is a match for the regex anywhere
185 /// in the haystack given.
186 ///
187 /// It is recommended to use this method if all you need to do is test
188 /// whether a match exists, since the underlying matching engine may be
189 /// able to do less work.
190 ///
191 /// # Example
192 ///
193 /// Test if some haystack contains at least one word with exactly 13
194 /// Unicode word characters:
195 ///
196 /// ```
197 /// use regex::Regex;
198 ///
199 /// let re = Regex::new(r"\b\w{13}\b").unwrap();
200 /// let hay = "I categorically deny having triskaidekaphobia.";
201 /// assert!(re.is_match(hay));
202 /// ```
203 #[inline]
204 pub fn is_match(&self, haystack: &str) -> bool {
205 self.is_match_at(haystack, 0)
206 }
207
208 /// This routine searches for the first match of this regex in the
209 /// haystack given, and if found, returns a [`Match`]. The `Match`
210 /// provides access to both the byte offsets of the match and the actual
211 /// substring that matched.
212 ///
213 /// Note that this should only be used if you want to find the entire
214 /// match. If instead you just want to test the existence of a match,
215 /// it's potentially faster to use `Regex::is_match(hay)` instead of
216 /// `Regex::find(hay).is_some()`.
217 ///
218 /// # Example
219 ///
220 /// Find the first word with exactly 13 Unicode word characters:
221 ///
222 /// ```
223 /// use regex::Regex;
224 ///
225 /// let re = Regex::new(r"\b\w{13}\b").unwrap();
226 /// let hay = "I categorically deny having triskaidekaphobia.";
227 /// let mat = re.find(hay).unwrap();
228 /// assert_eq!(2..15, mat.range());
229 /// assert_eq!("categorically", mat.as_str());
230 /// ```
231 #[inline]
232 pub fn find<'h>(&self, haystack: &'h str) -> Option<Match<'h>> {
233 self.find_at(haystack, 0)
234 }
235
236 /// Returns an iterator that yields successive non-overlapping matches in
237 /// the given haystack. The iterator yields values of type [`Match`].
238 ///
239 /// # Time complexity
240 ///
241 /// Note that since `find_iter` runs potentially many searches on the
242 /// haystack and since each search has worst case `O(m * n)` time
243 /// complexity, the overall worst case time complexity for iteration is
244 /// `O(m * n^2)`.
245 ///
246 /// # Example
247 ///
248 /// Find every word with exactly 13 Unicode word characters:
249 ///
250 /// ```
251 /// use regex::Regex;
252 ///
253 /// let re = Regex::new(r"\b\w{13}\b").unwrap();
254 /// let hay = "Retroactively relinquishing remunerations is reprehensible.";
255 /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_str()).collect();
256 /// assert_eq!(matches, vec![
257 /// "Retroactively",
258 /// "relinquishing",
259 /// "remunerations",
260 /// "reprehensible",
261 /// ]);
262 /// ```
263 #[inline]
264 pub fn find_iter<'r, 'h>(&'r self, haystack: &'h str) -> Matches<'r, 'h> {
265 Matches { haystack, it: self.meta.find_iter(haystack) }
266 }
267
268 /// This routine searches for the first match of this regex in the haystack
269 /// given, and if found, returns not only the overall match but also the
270 /// matches of each capture group in the regex. If no match is found, then
271 /// `None` is returned.
272 ///
273 /// Capture group `0` always corresponds to an implicit unnamed group that
274 /// includes the entire match. If a match is found, this group is always
275 /// present. Subsequent groups may be named and are numbered, starting
276 /// at 1, by the order in which the opening parenthesis appears in the
277 /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`,
278 /// `b` and `c` correspond to capture group indices `1`, `2` and `3`,
279 /// respectively.
280 ///
281 /// You should only use `captures` if you need access to the capture group
282 /// matches. Otherwise, [`Regex::find`] is generally faster for discovering
283 /// just the overall match.
284 ///
285 /// # Example
286 ///
287 /// Say you have some haystack with movie names and their release years,
288 /// like "'Citizen Kane' (1941)". It'd be nice if we could search for
289 /// substrings looking like that, while also extracting the movie name and
290 /// its release year separately. The example below shows how to do that.
291 ///
292 /// ```
293 /// use regex::Regex;
294 ///
295 /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
296 /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
297 /// let caps = re.captures(hay).unwrap();
298 /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
299 /// assert_eq!(caps.get(1).unwrap().as_str(), "Citizen Kane");
300 /// assert_eq!(caps.get(2).unwrap().as_str(), "1941");
301 /// // You can also access the groups by index using the Index notation.
302 /// // Note that this will panic on an invalid index. In this case, these
303 /// // accesses are always correct because the overall regex will only
304 /// // match when these capture groups match.
305 /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
306 /// assert_eq!(&caps[1], "Citizen Kane");
307 /// assert_eq!(&caps[2], "1941");
308 /// ```
309 ///
310 /// Note that the full match is at capture group `0`. Each subsequent
311 /// capture group is indexed by the order of its opening `(`.
312 ///
313 /// We can make this example a bit clearer by using *named* capture groups:
314 ///
315 /// ```
316 /// use regex::Regex;
317 ///
318 /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)").unwrap();
319 /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
320 /// let caps = re.captures(hay).unwrap();
321 /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
322 /// assert_eq!(caps.name("title").unwrap().as_str(), "Citizen Kane");
323 /// assert_eq!(caps.name("year").unwrap().as_str(), "1941");
324 /// // You can also access the groups by name using the Index notation.
325 /// // Note that this will panic on an invalid group name. In this case,
326 /// // these accesses are always correct because the overall regex will
327 /// // only match when these capture groups match.
328 /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
329 /// assert_eq!(&caps["title"], "Citizen Kane");
330 /// assert_eq!(&caps["year"], "1941");
331 /// ```
332 ///
333 /// Here we name the capture groups, which we can access with the `name`
334 /// method or the `Index` notation with a `&str`. Note that the named
335 /// capture groups are still accessible with `get` or the `Index` notation
336 /// with a `usize`.
337 ///
338 /// The `0`th capture group is always unnamed, so it must always be
339 /// accessed with `get(0)` or `[0]`.
340 ///
341 /// Finally, one other way to to get the matched substrings is with the
342 /// [`Captures::extract`] API:
343 ///
344 /// ```
345 /// use regex::Regex;
346 ///
347 /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
348 /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
349 /// let (full, [title, year]) = re.captures(hay).unwrap().extract();
350 /// assert_eq!(full, "'Citizen Kane' (1941)");
351 /// assert_eq!(title, "Citizen Kane");
352 /// assert_eq!(year, "1941");
353 /// ```
354 #[inline]
355 pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356 self.captures_at(haystack, 0)
357 }
358
359 /// Returns an iterator that yields successive non-overlapping matches in
360 /// the given haystack. The iterator yields values of type [`Captures`].
361 ///
362 /// This is the same as [`Regex::find_iter`], but instead of only providing
363 /// access to the overall match, each value yield includes access to the
364 /// matches of all capture groups in the regex. Reporting this extra match
365 /// data is potentially costly, so callers should only use `captures_iter`
366 /// over `find_iter` when they actually need access to the capture group
367 /// matches.
368 ///
369 /// # Time complexity
370 ///
371 /// Note that since `captures_iter` runs potentially many searches on the
372 /// haystack and since each search has worst case `O(m * n)` time
373 /// complexity, the overall worst case time complexity for iteration is
374 /// `O(m * n^2)`.
375 ///
376 /// # Example
377 ///
378 /// We can use this to find all movie titles and their release years in
379 /// some haystack, where the movie is formatted like "'Title' (xxxx)":
380 ///
381 /// ```
382 /// use regex::Regex;
383 ///
384 /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)").unwrap();
385 /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
386 /// let mut movies = vec![];
387 /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) {
388 /// movies.push((title, year.parse::<i64>()?));
389 /// }
390 /// assert_eq!(movies, vec![
391 /// ("Citizen Kane", 1941),
392 /// ("The Wizard of Oz", 1939),
393 /// ("M", 1931),
394 /// ]);
395 /// # Ok::<(), Box<dyn std::error::Error>>(())
396 /// ```
397 ///
398 /// Or with named groups:
399 ///
400 /// ```
401 /// use regex::Regex;
402 ///
403 /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)").unwrap();
404 /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
405 /// let mut it = re.captures_iter(hay);
406 ///
407 /// let caps = it.next().unwrap();
408 /// assert_eq!(&caps["title"], "Citizen Kane");
409 /// assert_eq!(&caps["year"], "1941");
410 ///
411 /// let caps = it.next().unwrap();
412 /// assert_eq!(&caps["title"], "The Wizard of Oz");
413 /// assert_eq!(&caps["year"], "1939");
414 ///
415 /// let caps = it.next().unwrap();
416 /// assert_eq!(&caps["title"], "M");
417 /// assert_eq!(&caps["year"], "1931");
418 /// ```
419 #[inline]
420 pub fn captures_iter<'r, 'h>(
421 &'r self,
422 haystack: &'h str,
423 ) -> CaptureMatches<'r, 'h> {
424 CaptureMatches { haystack, it: self.meta.captures_iter(haystack) }
425 }
426
427 /// Returns an iterator of substrings of the haystack given, delimited by a
428 /// match of the regex. Namely, each element of the iterator corresponds to
429 /// a part of the haystack that *isn't* matched by the regular expression.
430 ///
431 /// # Time complexity
432 ///
433 /// Since iterators over all matches requires running potentially many
434 /// searches on the haystack, and since each search has worst case
435 /// `O(m * n)` time complexity, the overall worst case time complexity for
436 /// this routine is `O(m * n^2)`.
437 ///
438 /// # Example
439 ///
440 /// To split a string delimited by arbitrary amounts of spaces or tabs:
441 ///
442 /// ```
443 /// use regex::Regex;
444 ///
445 /// let re = Regex::new(r"[ \t]+").unwrap();
446 /// let hay = "a b \t c\td e";
447 /// let fields: Vec<&str> = re.split(hay).collect();
448 /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
449 /// ```
450 ///
451 /// # Example: more cases
452 ///
453 /// Basic usage:
454 ///
455 /// ```
456 /// use regex::Regex;
457 ///
458 /// let re = Regex::new(r" ").unwrap();
459 /// let hay = "Mary had a little lamb";
460 /// let got: Vec<&str> = re.split(hay).collect();
461 /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
462 ///
463 /// let re = Regex::new(r"X").unwrap();
464 /// let hay = "";
465 /// let got: Vec<&str> = re.split(hay).collect();
466 /// assert_eq!(got, vec![""]);
467 ///
468 /// let re = Regex::new(r"X").unwrap();
469 /// let hay = "lionXXtigerXleopard";
470 /// let got: Vec<&str> = re.split(hay).collect();
471 /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
472 ///
473 /// let re = Regex::new(r"::").unwrap();
474 /// let hay = "lion::tiger::leopard";
475 /// let got: Vec<&str> = re.split(hay).collect();
476 /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
477 /// ```
478 ///
479 /// If a haystack contains multiple contiguous matches, you will end up
480 /// with empty spans yielded by the iterator:
481 ///
482 /// ```
483 /// use regex::Regex;
484 ///
485 /// let re = Regex::new(r"X").unwrap();
486 /// let hay = "XXXXaXXbXc";
487 /// let got: Vec<&str> = re.split(hay).collect();
488 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
489 ///
490 /// let re = Regex::new(r"/").unwrap();
491 /// let hay = "(///)";
492 /// let got: Vec<&str> = re.split(hay).collect();
493 /// assert_eq!(got, vec!["(", "", "", ")"]);
494 /// ```
495 ///
496 /// Separators at the start or end of a haystack are neighbored by empty
497 /// substring.
498 ///
499 /// ```
500 /// use regex::Regex;
501 ///
502 /// let re = Regex::new(r"0").unwrap();
503 /// let hay = "010";
504 /// let got: Vec<&str> = re.split(hay).collect();
505 /// assert_eq!(got, vec!["", "1", ""]);
506 /// ```
507 ///
508 /// When the empty string is used as a regex, it splits at every valid
509 /// UTF-8 boundary by default (which includes the beginning and end of the
510 /// haystack):
511 ///
512 /// ```
513 /// use regex::Regex;
514 ///
515 /// let re = Regex::new(r"").unwrap();
516 /// let hay = "rust";
517 /// let got: Vec<&str> = re.split(hay).collect();
518 /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
519 ///
520 /// // Splitting by an empty string is UTF-8 aware by default!
521 /// let re = Regex::new(r"").unwrap();
522 /// let hay = "☃";
523 /// let got: Vec<&str> = re.split(hay).collect();
524 /// assert_eq!(got, vec!["", "☃", ""]);
525 /// ```
526 ///
527 /// Contiguous separators (commonly shows up with whitespace), can lead to
528 /// possibly surprising behavior. For example, this code is correct:
529 ///
530 /// ```
531 /// use regex::Regex;
532 ///
533 /// let re = Regex::new(r" ").unwrap();
534 /// let hay = " a b c";
535 /// let got: Vec<&str> = re.split(hay).collect();
536 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
537 /// ```
538 ///
539 /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
540 /// to match contiguous space characters:
541 ///
542 /// ```
543 /// use regex::Regex;
544 ///
545 /// let re = Regex::new(r" +").unwrap();
546 /// let hay = " a b c";
547 /// let got: Vec<&str> = re.split(hay).collect();
548 /// // N.B. This does still include a leading empty span because ' +'
549 /// // matches at the beginning of the haystack.
550 /// assert_eq!(got, vec!["", "a", "b", "c"]);
551 /// ```
552 #[inline]
553 pub fn split<'r, 'h>(&'r self, haystack: &'h str) -> Split<'r, 'h> {
554 Split { haystack, it: self.meta.split(haystack) }
555 }
556
557 /// Returns an iterator of at most `limit` substrings of the haystack
558 /// given, delimited by a match of the regex. (A `limit` of `0` will return
559 /// no substrings.) Namely, each element of the iterator corresponds to a
560 /// part of the haystack that *isn't* matched by the regular expression.
561 /// The remainder of the haystack that is not split will be the last
562 /// element in the iterator.
563 ///
564 /// # Time complexity
565 ///
566 /// Since iterators over all matches requires running potentially many
567 /// searches on the haystack, and since each search has worst case
568 /// `O(m * n)` time complexity, the overall worst case time complexity for
569 /// this routine is `O(m * n^2)`.
570 ///
571 /// Although note that the worst case time here has an upper bound given
572 /// by the `limit` parameter.
573 ///
574 /// # Example
575 ///
576 /// Get the first two words in some haystack:
577 ///
578 /// ```
579 /// use regex::Regex;
580 ///
581 /// let re = Regex::new(r"\W+").unwrap();
582 /// let hay = "Hey! How are you?";
583 /// let fields: Vec<&str> = re.splitn(hay, 3).collect();
584 /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
585 /// ```
586 ///
587 /// # Examples: more cases
588 ///
589 /// ```
590 /// use regex::Regex;
591 ///
592 /// let re = Regex::new(r" ").unwrap();
593 /// let hay = "Mary had a little lamb";
594 /// let got: Vec<&str> = re.splitn(hay, 3).collect();
595 /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
596 ///
597 /// let re = Regex::new(r"X").unwrap();
598 /// let hay = "";
599 /// let got: Vec<&str> = re.splitn(hay, 3).collect();
600 /// assert_eq!(got, vec![""]);
601 ///
602 /// let re = Regex::new(r"X").unwrap();
603 /// let hay = "lionXXtigerXleopard";
604 /// let got: Vec<&str> = re.splitn(hay, 3).collect();
605 /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
606 ///
607 /// let re = Regex::new(r"::").unwrap();
608 /// let hay = "lion::tiger::leopard";
609 /// let got: Vec<&str> = re.splitn(hay, 2).collect();
610 /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
611 ///
612 /// let re = Regex::new(r"X").unwrap();
613 /// let hay = "abcXdef";
614 /// let got: Vec<&str> = re.splitn(hay, 1).collect();
615 /// assert_eq!(got, vec!["abcXdef"]);
616 ///
617 /// let re = Regex::new(r"X").unwrap();
618 /// let hay = "abcdef";
619 /// let got: Vec<&str> = re.splitn(hay, 2).collect();
620 /// assert_eq!(got, vec!["abcdef"]);
621 ///
622 /// let re = Regex::new(r"X").unwrap();
623 /// let hay = "abcXdef";
624 /// let got: Vec<&str> = re.splitn(hay, 0).collect();
625 /// assert!(got.is_empty());
626 /// ```
627 #[inline]
628 pub fn splitn<'r, 'h>(
629 &'r self,
630 haystack: &'h str,
631 limit: usize,
632 ) -> SplitN<'r, 'h> {
633 SplitN { haystack, it: self.meta.splitn(haystack, limit) }
634 }
635
636 /// Replaces the leftmost-first match in the given haystack with the
637 /// replacement provided. The replacement can be a regular string (where
638 /// `$N` and `$name` are expanded to match capture groups) or a function
639 /// that takes a [`Captures`] and returns the replaced string.
640 ///
641 /// If no match is found, then the haystack is returned unchanged. In that
642 /// case, this implementation will likely return a `Cow::Borrowed` value
643 /// such that no allocation is performed.
644 ///
645 /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
646 /// to be equivalent to the `haystack` given.
647 ///
648 /// # Replacement string syntax
649 ///
650 /// All instances of `$ref` in the replacement string are replaced with
651 /// the substring corresponding to the capture group identified by `ref`.
652 ///
653 /// `ref` may be an integer corresponding to the index of the capture group
654 /// (counted by order of opening parenthesis where `0` is the entire match)
655 /// or it can be a name (consisting of letters, digits or underscores)
656 /// corresponding to a named capture group.
657 ///
658 /// If `ref` isn't a valid capture group (whether the name doesn't exist or
659 /// isn't a valid index), then it is replaced with the empty string.
660 ///
661 /// The longest possible name is used. For example, `$1a` looks up the
662 /// capture group named `1a` and not the capture group at index `1`. To
663 /// exert more precise control over the name, use braces, e.g., `${1}a`.
664 ///
665 /// To write a literal `$` use `$$`.
666 ///
667 /// # Example
668 ///
669 /// Note that this function is polymorphic with respect to the replacement.
670 /// In typical usage, this can just be a normal string:
671 ///
672 /// ```
673 /// use regex::Regex;
674 ///
675 /// let re = Regex::new(r"[^01]+").unwrap();
676 /// assert_eq!(re.replace("1078910", ""), "1010");
677 /// ```
678 ///
679 /// But anything satisfying the [`Replacer`] trait will work. For example,
680 /// a closure of type `|&Captures| -> String` provides direct access to the
681 /// captures corresponding to a match. This allows one to access capturing
682 /// group matches easily:
683 ///
684 /// ```
685 /// use regex::{Captures, Regex};
686 ///
687 /// let re = Regex::new(r"([^,\s]+),\s+(\S+)").unwrap();
688 /// let result = re.replace("Springsteen, Bruce", |caps: &Captures| {
689 /// format!("{} {}", &caps[2], &caps[1])
690 /// });
691 /// assert_eq!(result, "Bruce Springsteen");
692 /// ```
693 ///
694 /// But this is a bit cumbersome to use all the time. Instead, a simple
695 /// syntax is supported (as described above) that expands `$name` into the
696 /// corresponding capture group. Here's the last example, but using this
697 /// expansion technique with named capture groups:
698 ///
699 /// ```
700 /// use regex::Regex;
701 ///
702 /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
703 /// let result = re.replace("Springsteen, Bruce", "$first $last");
704 /// assert_eq!(result, "Bruce Springsteen");
705 /// ```
706 ///
707 /// Note that using `$2` instead of `$first` or `$1` instead of `$last`
708 /// would produce the same result. To write a literal `$` use `$$`.
709 ///
710 /// Sometimes the replacement string requires use of curly braces to
711 /// delineate a capture group replacement when it is adjacent to some other
712 /// literal text. For example, if we wanted to join two words together with
713 /// an underscore:
714 ///
715 /// ```
716 /// use regex::Regex;
717 ///
718 /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)").unwrap();
719 /// let result = re.replace("deep fried", "${first}_$second");
720 /// assert_eq!(result, "deep_fried");
721 /// ```
722 ///
723 /// Without the curly braces, the capture group name `first_` would be
724 /// used, and since it doesn't exist, it would be replaced with the empty
725 /// string.
726 ///
727 /// Finally, sometimes you just want to replace a literal string with no
728 /// regard for capturing group expansion. This can be done by wrapping a
729 /// string with [`NoExpand`]:
730 ///
731 /// ```
732 /// use regex::{NoExpand, Regex};
733 ///
734 /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
735 /// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last"));
736 /// assert_eq!(result, "$2 $last");
737 /// ```
738 ///
739 /// Using `NoExpand` may also be faster, since the replacement string won't
740 /// need to be parsed for the `$` syntax.
741 #[inline]
742 pub fn replace<'h, R: Replacer>(
743 &self,
744 haystack: &'h str,
745 rep: R,
746 ) -> Cow<'h, str> {
747 self.replacen(haystack, 1, rep)
748 }
749
750 /// Replaces all non-overlapping matches in the haystack with the
751 /// replacement provided. This is the same as calling `replacen` with
752 /// `limit` set to `0`.
753 ///
754 /// If no match is found, then the haystack is returned unchanged. In that
755 /// case, this implementation will likely return a `Cow::Borrowed` value
756 /// such that no allocation is performed.
757 ///
758 /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
759 /// to be equivalent to the `haystack` given.
760 ///
761 /// The documentation for [`Regex::replace`] goes into more detail about
762 /// what kinds of replacement strings are supported.
763 ///
764 /// # Time complexity
765 ///
766 /// Since iterators over all matches requires running potentially many
767 /// searches on the haystack, and since each search has worst case
768 /// `O(m * n)` time complexity, the overall worst case time complexity for
769 /// this routine is `O(m * n^2)`.
770 ///
771 /// # Fallibility
772 ///
773 /// If you need to write a replacement routine where any individual
774 /// replacement might "fail," doing so with this API isn't really feasible
775 /// because there's no way to stop the search process if a replacement
776 /// fails. Instead, if you need this functionality, you should consider
777 /// implementing your own replacement routine:
778 ///
779 /// ```
780 /// use regex::{Captures, Regex};
781 ///
782 /// fn replace_all<E>(
783 /// re: &Regex,
784 /// haystack: &str,
785 /// replacement: impl Fn(&Captures) -> Result<String, E>,
786 /// ) -> Result<String, E> {
787 /// let mut new = String::with_capacity(haystack.len());
788 /// let mut last_match = 0;
789 /// for caps in re.captures_iter(haystack) {
790 /// let m = caps.get(0).unwrap();
791 /// new.push_str(&haystack[last_match..m.start()]);
792 /// new.push_str(&replacement(&caps)?);
793 /// last_match = m.end();
794 /// }
795 /// new.push_str(&haystack[last_match..]);
796 /// Ok(new)
797 /// }
798 ///
799 /// // Let's replace each word with the number of bytes in that word.
800 /// // But if we see a word that is "too long," we'll give up.
801 /// let re = Regex::new(r"\w+").unwrap();
802 /// let replacement = |caps: &Captures| -> Result<String, &'static str> {
803 /// if caps[0].len() >= 5 {
804 /// return Err("word too long");
805 /// }
806 /// Ok(caps[0].len().to_string())
807 /// };
808 /// assert_eq!(
809 /// Ok("2 3 3 3?".to_string()),
810 /// replace_all(&re, "hi how are you?", &replacement),
811 /// );
812 /// assert!(replace_all(&re, "hi there", &replacement).is_err());
813 /// ```
814 ///
815 /// # Example
816 ///
817 /// This example shows how to flip the order of whitespace (excluding line
818 /// terminators) delimited fields, and normalizes the whitespace that
819 /// delimits the fields:
820 ///
821 /// ```
822 /// use regex::Regex;
823 ///
824 /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
825 /// let hay = "
826 /// Greetings 1973
827 /// Wild\t1973
828 /// BornToRun\t\t\t\t1975
829 /// Darkness 1978
830 /// TheRiver 1980
831 /// ";
832 /// let new = re.replace_all(hay, "$2 $1");
833 /// assert_eq!(new, "
834 /// 1973 Greetings
835 /// 1973 Wild
836 /// 1975 BornToRun
837 /// 1978 Darkness
838 /// 1980 TheRiver
839 /// ");
840 /// ```
841 #[inline]
842 pub fn replace_all<'h, R: Replacer>(
843 &self,
844 haystack: &'h str,
845 rep: R,
846 ) -> Cow<'h, str> {
847 self.replacen(haystack, 0, rep)
848 }
849
850 /// Replaces at most `limit` non-overlapping matches in the haystack with
851 /// the replacement provided. If `limit` is `0`, then all non-overlapping
852 /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is
853 /// equivalent to `Regex::replacen(hay, 0, rep)`.
854 ///
855 /// If no match is found, then the haystack is returned unchanged. In that
856 /// case, this implementation will likely return a `Cow::Borrowed` value
857 /// such that no allocation is performed.
858 ///
859 /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
860 /// to be equivalent to the `haystack` given.
861 ///
862 /// The documentation for [`Regex::replace`] goes into more detail about
863 /// what kinds of replacement strings are supported.
864 ///
865 /// # Time complexity
866 ///
867 /// Since iterators over all matches requires running potentially many
868 /// searches on the haystack, and since each search has worst case
869 /// `O(m * n)` time complexity, the overall worst case time complexity for
870 /// this routine is `O(m * n^2)`.
871 ///
872 /// Although note that the worst case time here has an upper bound given
873 /// by the `limit` parameter.
874 ///
875 /// # Fallibility
876 ///
877 /// See the corresponding section in the docs for [`Regex::replace_all`]
878 /// for tips on how to deal with a replacement routine that can fail.
879 ///
880 /// # Example
881 ///
882 /// This example shows how to flip the order of whitespace (excluding line
883 /// terminators) delimited fields, and normalizes the whitespace that
884 /// delimits the fields. But we only do it for the first two matches.
885 ///
886 /// ```
887 /// use regex::Regex;
888 ///
889 /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
890 /// let hay = "
891 /// Greetings 1973
892 /// Wild\t1973
893 /// BornToRun\t\t\t\t1975
894 /// Darkness 1978
895 /// TheRiver 1980
896 /// ";
897 /// let new = re.replacen(hay, 2, "$2 $1");
898 /// assert_eq!(new, "
899 /// 1973 Greetings
900 /// 1973 Wild
901 /// BornToRun\t\t\t\t1975
902 /// Darkness 1978
903 /// TheRiver 1980
904 /// ");
905 /// ```
906 #[inline]
907 pub fn replacen<'h, R: Replacer>(
908 &self,
909 haystack: &'h str,
910 limit: usize,
911 mut rep: R,
912 ) -> Cow<'h, str> {
913 // If we know that the replacement doesn't have any capture expansions,
914 // then we can use the fast path. The fast path can make a tremendous
915 // difference:
916 //
917 // 1) We use `find_iter` instead of `captures_iter`. Not asking for
918 // captures generally makes the regex engines faster.
919 // 2) We don't need to look up all of the capture groups and do
920 // replacements inside the replacement string. We just push it
921 // at each match and be done with it.
922 if let Some(rep) = rep.no_expansion() {
923 let mut it = self.find_iter(haystack).enumerate().peekable();
924 if it.peek().is_none() {
925 return Cow::Borrowed(haystack);
926 }
927 let mut new = String::with_capacity(haystack.len());
928 let mut last_match = 0;
929 for (i, m) in it {
930 new.push_str(&haystack[last_match..m.start()]);
931 new.push_str(&rep);
932 last_match = m.end();
933 if limit > 0 && i >= limit - 1 {
934 break;
935 }
936 }
937 new.push_str(&haystack[last_match..]);
938 return Cow::Owned(new);
939 }
940
941 // The slower path, which we use if the replacement may need access to
942 // capture groups.
943 let mut it = self.captures_iter(haystack).enumerate().peekable();
944 if it.peek().is_none() {
945 return Cow::Borrowed(haystack);
946 }
947 let mut new = String::with_capacity(haystack.len());
948 let mut last_match = 0;
949 for (i, cap) in it {
950 // unwrap on 0 is OK because captures only reports matches
951 let m = cap.get(0).unwrap();
952 new.push_str(&haystack[last_match..m.start()]);
953 rep.replace_append(&cap, &mut new);
954 last_match = m.end();
955 if limit > 0 && i >= limit - 1 {
956 break;
957 }
958 }
959 new.push_str(&haystack[last_match..]);
960 Cow::Owned(new)
961 }
962}
963
964/// A group of advanced or "lower level" search methods. Some methods permit
965/// starting the search at a position greater than `0` in the haystack. Other
966/// methods permit reusing allocations, for example, when extracting the
967/// matches for capture groups.
968impl Regex {
969 /// Returns the end byte offset of the first match in the haystack given.
970 ///
971 /// This method may have the same performance characteristics as
972 /// `is_match`. Behaviorlly, it doesn't just report whether it match
973 /// occurs, but also the end offset for a match. In particular, the offset
974 /// returned *may be shorter* than the proper end of the leftmost-first
975 /// match that you would find via [`Regex::find`].
976 ///
977 /// Note that it is not guaranteed that this routine finds the shortest or
978 /// "earliest" possible match. Instead, the main idea of this API is that
979 /// it returns the offset at the point at which the internal regex engine
980 /// has determined that a match has occurred. This may vary depending on
981 /// which internal regex engine is used, and thus, the offset itself may
982 /// change based on internal heuristics.
983 ///
984 /// # Example
985 ///
986 /// Typically, `a+` would match the entire first sequence of `a` in some
987 /// haystack, but `shortest_match` *may* give up as soon as it sees the
988 /// first `a`.
989 ///
990 /// ```
991 /// use regex::Regex;
992 ///
993 /// let re = Regex::new(r"a+").unwrap();
994 /// let offset = re.shortest_match("aaaaa").unwrap();
995 /// assert_eq!(offset, 1);
996 /// ```
997 #[inline]
998 pub fn shortest_match(&self, haystack: &str) -> Option<usize> {
999 self.shortest_match_at(haystack, 0)
1000 }
1001
1002 /// Returns the same as [`Regex::shortest_match`], but starts the search at
1003 /// the given offset.
1004 ///
1005 /// The significance of the starting point is that it takes the surrounding
1006 /// context into consideration. For example, the `\A` anchor can only match
1007 /// when `start == 0`.
1008 ///
1009 /// If a match is found, the offset returned is relative to the beginning
1010 /// of the haystack, not the beginning of the search.
1011 ///
1012 /// # Panics
1013 ///
1014 /// This panics when `start >= haystack.len() + 1`.
1015 ///
1016 /// # Example
1017 ///
1018 /// This example shows the significance of `start` by demonstrating how it
1019 /// can be used to permit look-around assertions in a regex to take the
1020 /// surrounding context into account.
1021 ///
1022 /// ```
1023 /// use regex::Regex;
1024 ///
1025 /// let re = Regex::new(r"\bchew\b").unwrap();
1026 /// let hay = "eschew";
1027 /// // We get a match here, but it's probably not intended.
1028 /// assert_eq!(re.shortest_match(&hay[2..]), Some(4));
1029 /// // No match because the assertions take the context into account.
1030 /// assert_eq!(re.shortest_match_at(hay, 2), None);
1031 /// ```
1032 #[inline]
1033 pub fn shortest_match_at(
1034 &self,
1035 haystack: &str,
1036 start: usize,
1037 ) -> Option<usize> {
1038 let input =
1039 Input::new(haystack).earliest(true).span(start..haystack.len());
1040 self.meta.search_half(&input).map(|hm| hm.offset())
1041 }
1042
1043 /// Returns the same as [`Regex::is_match`], but starts the search at the
1044 /// given offset.
1045 ///
1046 /// The significance of the starting point is that it takes the surrounding
1047 /// context into consideration. For example, the `\A` anchor can only
1048 /// match when `start == 0`.
1049 ///
1050 /// # Panics
1051 ///
1052 /// This panics when `start >= haystack.len() + 1`.
1053 ///
1054 /// # Example
1055 ///
1056 /// This example shows the significance of `start` by demonstrating how it
1057 /// can be used to permit look-around assertions in a regex to take the
1058 /// surrounding context into account.
1059 ///
1060 /// ```
1061 /// use regex::Regex;
1062 ///
1063 /// let re = Regex::new(r"\bchew\b").unwrap();
1064 /// let hay = "eschew";
1065 /// // We get a match here, but it's probably not intended.
1066 /// assert!(re.is_match(&hay[2..]));
1067 /// // No match because the assertions take the context into account.
1068 /// assert!(!re.is_match_at(hay, 2));
1069 /// ```
1070 #[inline]
1071 pub fn is_match_at(&self, haystack: &str, start: usize) -> bool {
1072 let input =
1073 Input::new(haystack).earliest(true).span(start..haystack.len());
1074 self.meta.search_half(&input).is_some()
1075 }
1076
1077 /// Returns the same as [`Regex::find`], but starts the search at the given
1078 /// offset.
1079 ///
1080 /// The significance of the starting point is that it takes the surrounding
1081 /// context into consideration. For example, the `\A` anchor can only
1082 /// match when `start == 0`.
1083 ///
1084 /// # Panics
1085 ///
1086 /// This panics when `start >= haystack.len() + 1`.
1087 ///
1088 /// # Example
1089 ///
1090 /// This example shows the significance of `start` by demonstrating how it
1091 /// can be used to permit look-around assertions in a regex to take the
1092 /// surrounding context into account.
1093 ///
1094 /// ```
1095 /// use regex::Regex;
1096 ///
1097 /// let re = Regex::new(r"\bchew\b").unwrap();
1098 /// let hay = "eschew";
1099 /// // We get a match here, but it's probably not intended.
1100 /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4));
1101 /// // No match because the assertions take the context into account.
1102 /// assert_eq!(re.find_at(hay, 2), None);
1103 /// ```
1104 #[inline]
1105 pub fn find_at<'h>(
1106 &self,
1107 haystack: &'h str,
1108 start: usize,
1109 ) -> Option<Match<'h>> {
1110 let input = Input::new(haystack).span(start..haystack.len());
1111 self.meta
1112 .search(&input)
1113 .map(|m| Match::new(haystack, m.start(), m.end()))
1114 }
1115
1116 /// Returns the same as [`Regex::captures`], but starts the search at the
1117 /// given offset.
1118 ///
1119 /// The significance of the starting point is that it takes the surrounding
1120 /// context into consideration. For example, the `\A` anchor can only
1121 /// match when `start == 0`.
1122 ///
1123 /// # Panics
1124 ///
1125 /// This panics when `start >= haystack.len() + 1`.
1126 ///
1127 /// # Example
1128 ///
1129 /// This example shows the significance of `start` by demonstrating how it
1130 /// can be used to permit look-around assertions in a regex to take the
1131 /// surrounding context into account.
1132 ///
1133 /// ```
1134 /// use regex::Regex;
1135 ///
1136 /// let re = Regex::new(r"\bchew\b").unwrap();
1137 /// let hay = "eschew";
1138 /// // We get a match here, but it's probably not intended.
1139 /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], "chew");
1140 /// // No match because the assertions take the context into account.
1141 /// assert!(re.captures_at(hay, 2).is_none());
1142 /// ```
1143 #[inline]
1144 pub fn captures_at<'h>(
1145 &self,
1146 haystack: &'h str,
1147 start: usize,
1148 ) -> Option<Captures<'h>> {
1149 let input = Input::new(haystack).span(start..haystack.len());
1150 let mut caps = self.meta.create_captures();
1151 self.meta.search_captures(&input, &mut caps);
1152 if caps.is_match() {
1153 let static_captures_len = self.static_captures_len();
1154 Some(Captures { haystack, caps, static_captures_len })
1155 } else {
1156 None
1157 }
1158 }
1159
1160 /// This is like [`Regex::captures`], but writes the byte offsets of each
1161 /// capture group match into the locations given.
1162 ///
1163 /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`],
1164 /// but does *not* store a reference to the haystack. This makes its API
1165 /// a bit lower level and less convenient. But in exchange, callers
1166 /// may allocate their own `CaptureLocations` and reuse it for multiple
1167 /// searches. This may be helpful if allocating a `Captures` shows up in a
1168 /// profile as too costly.
1169 ///
1170 /// To create a `CaptureLocations` value, use the
1171 /// [`Regex::capture_locations`] method.
1172 ///
1173 /// This also returns the overall match if one was found. When a match is
1174 /// found, its offsets are also always stored in `locs` at index `0`.
1175 ///
1176 /// # Panics
1177 ///
1178 /// This routine may panic if the given `CaptureLocations` was not created
1179 /// by this regex.
1180 ///
1181 /// # Example
1182 ///
1183 /// ```
1184 /// use regex::Regex;
1185 ///
1186 /// let re = Regex::new(r"^([a-z]+)=(\S*)$").unwrap();
1187 /// let mut locs = re.capture_locations();
1188 /// assert!(re.captures_read(&mut locs, "id=foo123").is_some());
1189 /// assert_eq!(Some((0, 9)), locs.get(0));
1190 /// assert_eq!(Some((0, 2)), locs.get(1));
1191 /// assert_eq!(Some((3, 9)), locs.get(2));
1192 /// ```
1193 #[inline]
1194 pub fn captures_read<'h>(
1195 &self,
1196 locs: &mut CaptureLocations,
1197 haystack: &'h str,
1198 ) -> Option<Match<'h>> {
1199 self.captures_read_at(locs, haystack, 0)
1200 }
1201
1202 /// Returns the same as [`Regex::captures_read`], but starts the search at
1203 /// the given offset.
1204 ///
1205 /// The significance of the starting point is that it takes the surrounding
1206 /// context into consideration. For example, the `\A` anchor can only
1207 /// match when `start == 0`.
1208 ///
1209 /// # Panics
1210 ///
1211 /// This panics when `start >= haystack.len() + 1`.
1212 ///
1213 /// This routine may also panic if the given `CaptureLocations` was not
1214 /// created by this regex.
1215 ///
1216 /// # Example
1217 ///
1218 /// This example shows the significance of `start` by demonstrating how it
1219 /// can be used to permit look-around assertions in a regex to take the
1220 /// surrounding context into account.
1221 ///
1222 /// ```
1223 /// use regex::Regex;
1224 ///
1225 /// let re = Regex::new(r"\bchew\b").unwrap();
1226 /// let hay = "eschew";
1227 /// let mut locs = re.capture_locations();
1228 /// // We get a match here, but it's probably not intended.
1229 /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some());
1230 /// // No match because the assertions take the context into account.
1231 /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none());
1232 /// ```
1233 #[inline]
1234 pub fn captures_read_at<'h>(
1235 &self,
1236 locs: &mut CaptureLocations,
1237 haystack: &'h str,
1238 start: usize,
1239 ) -> Option<Match<'h>> {
1240 let input = Input::new(haystack).span(start..haystack.len());
1241 self.meta.search_captures(&input, &mut locs.0);
1242 locs.0.get_match().map(|m| Match::new(haystack, m.start(), m.end()))
1243 }
1244
1245 /// An undocumented alias for `captures_read_at`.
1246 ///
1247 /// The `regex-capi` crate previously used this routine, so to avoid
1248 /// breaking that crate, we continue to provide the name as an undocumented
1249 /// alias.
1250 #[doc(hidden)]
1251 #[inline]
1252 pub fn read_captures_at<'h>(
1253 &self,
1254 locs: &mut CaptureLocations,
1255 haystack: &'h str,
1256 start: usize,
1257 ) -> Option<Match<'h>> {
1258 self.captures_read_at(locs, haystack, start)
1259 }
1260}
1261
1262/// Auxiliary methods.
1263impl Regex {
1264 /// Returns the original string of this regex.
1265 ///
1266 /// # Example
1267 ///
1268 /// ```
1269 /// use regex::Regex;
1270 ///
1271 /// let re = Regex::new(r"foo\w+bar").unwrap();
1272 /// assert_eq!(re.as_str(), r"foo\w+bar");
1273 /// ```
1274 #[inline]
1275 pub fn as_str(&self) -> &str {
1276 &self.pattern
1277 }
1278
1279 /// Returns an iterator over the capture names in this regex.
1280 ///
1281 /// The iterator returned yields elements of type `Option<&str>`. That is,
1282 /// the iterator yields values for all capture groups, even ones that are
1283 /// unnamed. The order of the groups corresponds to the order of the group's
1284 /// corresponding opening parenthesis.
1285 ///
1286 /// The first element of the iterator always yields the group corresponding
1287 /// to the overall match, and this group is always unnamed. Therefore, the
1288 /// iterator always yields at least one group.
1289 ///
1290 /// # Example
1291 ///
1292 /// This shows basic usage with a mix of named and unnamed capture groups:
1293 ///
1294 /// ```
1295 /// use regex::Regex;
1296 ///
1297 /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
1298 /// let mut names = re.capture_names();
1299 /// assert_eq!(names.next(), Some(None));
1300 /// assert_eq!(names.next(), Some(Some("a")));
1301 /// assert_eq!(names.next(), Some(Some("b")));
1302 /// assert_eq!(names.next(), Some(None));
1303 /// // the '(?:.)' group is non-capturing and so doesn't appear here!
1304 /// assert_eq!(names.next(), Some(Some("c")));
1305 /// assert_eq!(names.next(), None);
1306 /// ```
1307 ///
1308 /// The iterator always yields at least one element, even for regexes with
1309 /// no capture groups and even for regexes that can never match:
1310 ///
1311 /// ```
1312 /// use regex::Regex;
1313 ///
1314 /// let re = Regex::new(r"").unwrap();
1315 /// let mut names = re.capture_names();
1316 /// assert_eq!(names.next(), Some(None));
1317 /// assert_eq!(names.next(), None);
1318 ///
1319 /// let re = Regex::new(r"[a&&b]").unwrap();
1320 /// let mut names = re.capture_names();
1321 /// assert_eq!(names.next(), Some(None));
1322 /// assert_eq!(names.next(), None);
1323 /// ```
1324 #[inline]
1325 pub fn capture_names(&self) -> CaptureNames<'_> {
1326 CaptureNames(self.meta.group_info().pattern_names(PatternID::ZERO))
1327 }
1328
1329 /// Returns the number of captures groups in this regex.
1330 ///
1331 /// This includes all named and unnamed groups, including the implicit
1332 /// unnamed group that is always present and corresponds to the entire
1333 /// match.
1334 ///
1335 /// Since the implicit unnamed group is always included in this length, the
1336 /// length returned is guaranteed to be greater than zero.
1337 ///
1338 /// # Example
1339 ///
1340 /// ```
1341 /// use regex::Regex;
1342 ///
1343 /// let re = Regex::new(r"foo").unwrap();
1344 /// assert_eq!(1, re.captures_len());
1345 ///
1346 /// let re = Regex::new(r"(foo)").unwrap();
1347 /// assert_eq!(2, re.captures_len());
1348 ///
1349 /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
1350 /// assert_eq!(5, re.captures_len());
1351 ///
1352 /// let re = Regex::new(r"[a&&b]").unwrap();
1353 /// assert_eq!(1, re.captures_len());
1354 /// ```
1355 #[inline]
1356 pub fn captures_len(&self) -> usize {
1357 self.meta.group_info().group_len(PatternID::ZERO)
1358 }
1359
1360 /// Returns the total number of capturing groups that appear in every
1361 /// possible match.
1362 ///
1363 /// If the number of capture groups can vary depending on the match, then
1364 /// this returns `None`. That is, a value is only returned when the number
1365 /// of matching groups is invariant or "static."
1366 ///
1367 /// Note that like [`Regex::captures_len`], this **does** include the
1368 /// implicit capturing group corresponding to the entire match. Therefore,
1369 /// when a non-None value is returned, it is guaranteed to be at least `1`.
1370 /// Stated differently, a return value of `Some(0)` is impossible.
1371 ///
1372 /// # Example
1373 ///
1374 /// This shows a few cases where a static number of capture groups is
1375 /// available and a few cases where it is not.
1376 ///
1377 /// ```
1378 /// use regex::Regex;
1379 ///
1380 /// let len = |pattern| {
1381 /// Regex::new(pattern).map(|re| re.static_captures_len())
1382 /// };
1383 ///
1384 /// assert_eq!(Some(1), len("a")?);
1385 /// assert_eq!(Some(2), len("(a)")?);
1386 /// assert_eq!(Some(2), len("(a)|(b)")?);
1387 /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1388 /// assert_eq!(None, len("(a)|b")?);
1389 /// assert_eq!(None, len("a|(b)")?);
1390 /// assert_eq!(None, len("(b)*")?);
1391 /// assert_eq!(Some(2), len("(b)+")?);
1392 ///
1393 /// # Ok::<(), Box<dyn std::error::Error>>(())
1394 /// ```
1395 #[inline]
1396 pub fn static_captures_len(&self) -> Option<usize> {
1397 self.meta.static_captures_len()
1398 }
1399
1400 /// Returns a fresh allocated set of capture locations that can
1401 /// be reused in multiple calls to [`Regex::captures_read`] or
1402 /// [`Regex::captures_read_at`].
1403 ///
1404 /// The returned locations can be used for any subsequent search for this
1405 /// particular regex. There is no guarantee that it is correct to use for
1406 /// other regexes, even if they have the same number of capture groups.
1407 ///
1408 /// # Example
1409 ///
1410 /// ```
1411 /// use regex::Regex;
1412 ///
1413 /// let re = Regex::new(r"(.)(.)(\w+)").unwrap();
1414 /// let mut locs = re.capture_locations();
1415 /// assert!(re.captures_read(&mut locs, "Padron").is_some());
1416 /// assert_eq!(locs.get(0), Some((0, 6)));
1417 /// assert_eq!(locs.get(1), Some((0, 1)));
1418 /// assert_eq!(locs.get(2), Some((1, 2)));
1419 /// assert_eq!(locs.get(3), Some((2, 6)));
1420 /// ```
1421 #[inline]
1422 pub fn capture_locations(&self) -> CaptureLocations {
1423 CaptureLocations(self.meta.create_captures())
1424 }
1425
1426 /// An alias for `capture_locations` to preserve backward compatibility.
1427 ///
1428 /// The `regex-capi` crate used this method, so to avoid breaking that
1429 /// crate, we continue to export it as an undocumented API.
1430 #[doc(hidden)]
1431 #[inline]
1432 pub fn locations(&self) -> CaptureLocations {
1433 self.capture_locations()
1434 }
1435}
1436
1437/// Represents a single match of a regex in a haystack.
1438///
1439/// A `Match` contains both the start and end byte offsets of the match and the
1440/// actual substring corresponding to the range of those byte offsets. It is
1441/// guaranteed that `start <= end`. When `start == end`, the match is empty.
1442///
1443/// Since this `Match` can only be produced by the top-level `Regex` APIs
1444/// that only support searching UTF-8 encoded strings, the byte offsets for a
1445/// `Match` are guaranteed to fall on valid UTF-8 codepoint boundaries. That
1446/// is, slicing a `&str` with [`Match::range`] is guaranteed to never panic.
1447///
1448/// Values with this type are created by [`Regex::find`] or
1449/// [`Regex::find_iter`]. Other APIs can create `Match` values too. For
1450/// example, [`Captures::get`].
1451///
1452/// The lifetime parameter `'h` refers to the lifetime of the matched of the
1453/// haystack that this match was produced from.
1454///
1455/// # Numbering
1456///
1457/// The byte offsets in a `Match` form a half-open interval. That is, the
1458/// start of the range is inclusive and the end of the range is exclusive.
1459/// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte
1460/// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and
1461/// `6` corresponds to `x`, which is one past the end of the match. This
1462/// corresponds to the same kind of slicing that Rust uses.
1463///
1464/// For more on why this was chosen over other schemes (aside from being
1465/// consistent with how Rust the language works), see [this discussion] and
1466/// [Dijkstra's note on a related topic][note].
1467///
1468/// [this discussion]: https://github.com/rust-lang/regex/discussions/866
1469/// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
1470///
1471/// # Example
1472///
1473/// This example shows the value of each of the methods on `Match` for a
1474/// particular search.
1475///
1476/// ```
1477/// use regex::Regex;
1478///
1479/// let re = Regex::new(r"\p{Greek}+").unwrap();
1480/// let hay = "Greek: αβγδ";
1481/// let m = re.find(hay).unwrap();
1482/// assert_eq!(7, m.start());
1483/// assert_eq!(15, m.end());
1484/// assert!(!m.is_empty());
1485/// assert_eq!(8, m.len());
1486/// assert_eq!(7..15, m.range());
1487/// assert_eq!("αβγδ", m.as_str());
1488/// ```
1489#[derive(Copy, Clone, Eq, PartialEq)]
1490pub struct Match<'h> {
1491 haystack: &'h str,
1492 start: usize,
1493 end: usize,
1494}
1495
1496impl<'h> Match<'h> {
1497 /// Returns the byte offset of the start of the match in the haystack. The
1498 /// start of the match corresponds to the position where the match begins
1499 /// and includes the first byte in the match.
1500 ///
1501 /// It is guaranteed that `Match::start() <= Match::end()`.
1502 ///
1503 /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That
1504 /// is, it will never be an offset that appears between the UTF-8 code
1505 /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is
1506 /// always safe to slice the corresponding haystack using this offset.
1507 #[inline]
1508 pub fn start(&self) -> usize {
1509 self.start
1510 }
1511
1512 /// Returns the byte offset of the end of the match in the haystack. The
1513 /// end of the match corresponds to the byte immediately following the last
1514 /// byte in the match. This means that `&slice[start..end]` works as one
1515 /// would expect.
1516 ///
1517 /// It is guaranteed that `Match::start() <= Match::end()`.
1518 ///
1519 /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That
1520 /// is, it will never be an offset that appears between the UTF-8 code
1521 /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is
1522 /// always safe to slice the corresponding haystack using this offset.
1523 #[inline]
1524 pub fn end(&self) -> usize {
1525 self.end
1526 }
1527
1528 /// Returns true if and only if this match has a length of zero.
1529 ///
1530 /// Note that an empty match can only occur when the regex itself can
1531 /// match the empty string. Here are some examples of regexes that can
1532 /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`,
1533 /// `(foo|\d+|quux)?`.
1534 #[inline]
1535 pub fn is_empty(&self) -> bool {
1536 self.start == self.end
1537 }
1538
1539 /// Returns the length, in bytes, of this match.
1540 #[inline]
1541 pub fn len(&self) -> usize {
1542 self.end - self.start
1543 }
1544
1545 /// Returns the range over the starting and ending byte offsets of the
1546 /// match in the haystack.
1547 ///
1548 /// It is always correct to slice the original haystack searched with this
1549 /// range. That is, because the offsets are guaranteed to fall on valid
1550 /// UTF-8 boundaries, the range returned is always valid.
1551 #[inline]
1552 pub fn range(&self) -> core::ops::Range<usize> {
1553 self.start..self.end
1554 }
1555
1556 /// Returns the substring of the haystack that matched.
1557 #[inline]
1558 pub fn as_str(&self) -> &'h str {
1559 &self.haystack[self.range()]
1560 }
1561
1562 /// Creates a new match from the given haystack and byte offsets.
1563 #[inline]
1564 fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> {
1565 Match { haystack, start, end }
1566 }
1567}
1568
1569impl<'h> core::fmt::Debug for Match<'h> {
1570 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1571 f.debug_struct("Match")
1572 .field("start", &self.start)
1573 .field("end", &self.end)
1574 .field("string", &self.as_str())
1575 .finish()
1576 }
1577}
1578
1579impl<'h> From<Match<'h>> for &'h str {
1580 fn from(m: Match<'h>) -> &'h str {
1581 m.as_str()
1582 }
1583}
1584
1585impl<'h> From<Match<'h>> for core::ops::Range<usize> {
1586 fn from(m: Match<'h>) -> core::ops::Range<usize> {
1587 m.range()
1588 }
1589}
1590
1591/// Represents the capture groups for a single match.
1592///
1593/// Capture groups refer to parts of a regex enclosed in parentheses. They
1594/// can be optionally named. The purpose of capture groups is to be able to
1595/// reference different parts of a match based on the original pattern. In
1596/// essence, a `Captures` is a container of [`Match`] values for each group
1597/// that participated in a regex match. Each `Match` can be looked up by either
1598/// its capture group index or name (if it has one).
1599///
1600/// For example, say you want to match the individual letters in a 5-letter
1601/// word:
1602///
1603/// ```text
1604/// (?<first>\w)(\w)(?:\w)\w(?<last>\w)
1605/// ```
1606///
1607/// This regex has 4 capture groups:
1608///
1609/// * The group at index `0` corresponds to the overall match. It is always
1610/// present in every match and never has a name.
1611/// * The group at index `1` with name `first` corresponding to the first
1612/// letter.
1613/// * The group at index `2` with no name corresponding to the second letter.
1614/// * The group at index `3` with name `last` corresponding to the fifth and
1615/// last letter.
1616///
1617/// Notice that `(?:\w)` was not listed above as a capture group despite it
1618/// being enclosed in parentheses. That's because `(?:pattern)` is a special
1619/// syntax that permits grouping but *without* capturing. The reason for not
1620/// treating it as a capture is that tracking and reporting capture groups
1621/// requires additional state that may lead to slower searches. So using as few
1622/// capture groups as possible can help performance. (Although the difference
1623/// in performance of a couple of capture groups is likely immaterial.)
1624///
1625/// Values with this type are created by [`Regex::captures`] or
1626/// [`Regex::captures_iter`].
1627///
1628/// `'h` is the lifetime of the haystack that these captures were matched from.
1629///
1630/// # Example
1631///
1632/// ```
1633/// use regex::Regex;
1634///
1635/// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)").unwrap();
1636/// let caps = re.captures("toady").unwrap();
1637/// assert_eq!("toady", &caps[0]);
1638/// assert_eq!("t", &caps["first"]);
1639/// assert_eq!("o", &caps[2]);
1640/// assert_eq!("y", &caps["last"]);
1641/// ```
1642pub struct Captures<'h> {
1643 haystack: &'h str,
1644 caps: captures::Captures,
1645 static_captures_len: Option<usize>,
1646}
1647
1648impl<'h> Captures<'h> {
1649 /// Returns the `Match` associated with the capture group at index `i`. If
1650 /// `i` does not correspond to a capture group, or if the capture group did
1651 /// not participate in the match, then `None` is returned.
1652 ///
1653 /// When `i == 0`, this is guaranteed to return a non-`None` value.
1654 ///
1655 /// # Examples
1656 ///
1657 /// Get the substring that matched with a default of an empty string if the
1658 /// group didn't participate in the match:
1659 ///
1660 /// ```
1661 /// use regex::Regex;
1662 ///
1663 /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))").unwrap();
1664 /// let caps = re.captures("abc123").unwrap();
1665 ///
1666 /// let substr1 = caps.get(1).map_or("", |m| m.as_str());
1667 /// let substr2 = caps.get(2).map_or("", |m| m.as_str());
1668 /// assert_eq!(substr1, "123");
1669 /// assert_eq!(substr2, "");
1670 /// ```
1671 #[inline]
1672 pub fn get(&self, i: usize) -> Option<Match<'h>> {
1673 self.caps
1674 .get_group(i)
1675 .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1676 }
1677
1678 /// Returns the `Match` associated with the capture group named `name`. If
1679 /// `name` isn't a valid capture group or it refers to a group that didn't
1680 /// match, then `None` is returned.
1681 ///
1682 /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime
1683 /// matches the lifetime of the haystack in this `Captures` value.
1684 /// Conversely, the substring returned by `caps["name"]` has a lifetime
1685 /// of the `Captures` value, which is likely shorter than the lifetime of
1686 /// the haystack. In some cases, it may be necessary to use this method to
1687 /// access the matching substring instead of the `caps["name"]` notation.
1688 ///
1689 /// # Examples
1690 ///
1691 /// Get the substring that matched with a default of an empty string if the
1692 /// group didn't participate in the match:
1693 ///
1694 /// ```
1695 /// use regex::Regex;
1696 ///
1697 /// let re = Regex::new(
1698 /// r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))",
1699 /// ).unwrap();
1700 /// let caps = re.captures("abc123").unwrap();
1701 ///
1702 /// let numbers = caps.name("numbers").map_or("", |m| m.as_str());
1703 /// let letters = caps.name("letters").map_or("", |m| m.as_str());
1704 /// assert_eq!(numbers, "123");
1705 /// assert_eq!(letters, "");
1706 /// ```
1707 #[inline]
1708 pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709 self.caps
1710 .get_group_by_name(name)
1711 .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712 }
1713
1714 /// This is a convenience routine for extracting the substrings
1715 /// corresponding to matching capture groups.
1716 ///
1717 /// This returns a tuple where the first element corresponds to the full
1718 /// substring of the haystack that matched the regex. The second element is
1719 /// an array of substrings, with each corresponding to the substring that
1720 /// matched for a particular capture group.
1721 ///
1722 /// # Panics
1723 ///
1724 /// This panics if the number of possible matching groups in this
1725 /// `Captures` value is not fixed to `N` in all circumstances.
1726 /// More precisely, this routine only works when `N` is equivalent to
1727 /// [`Regex::static_captures_len`].
1728 ///
1729 /// Stated more plainly, if the number of matching capture groups in a
1730 /// regex can vary from match to match, then this function always panics.
1731 ///
1732 /// For example, `(a)(b)|(c)` could produce two matching capture groups
1733 /// or one matching capture group for any given match. Therefore, one
1734 /// cannot use `extract` with such a pattern.
1735 ///
1736 /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because
1737 /// the number of capture groups in every match is always equivalent,
1738 /// even if the capture _indices_ in each match are not.
1739 ///
1740 /// # Example
1741 ///
1742 /// ```
1743 /// use regex::Regex;
1744 ///
1745 /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
1746 /// let hay = "On 2010-03-14, I became a Tenneessee lamb.";
1747 /// let Some((full, [year, month, day])) =
1748 /// re.captures(hay).map(|caps| caps.extract()) else { return };
1749 /// assert_eq!("2010-03-14", full);
1750 /// assert_eq!("2010", year);
1751 /// assert_eq!("03", month);
1752 /// assert_eq!("14", day);
1753 /// ```
1754 ///
1755 /// # Example: iteration
1756 ///
1757 /// This example shows how to use this method when iterating over all
1758 /// `Captures` matches in a haystack.
1759 ///
1760 /// ```
1761 /// use regex::Regex;
1762 ///
1763 /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
1764 /// let hay = "1973-01-05, 1975-08-25 and 1980-10-18";
1765 ///
1766 /// let mut dates: Vec<(&str, &str, &str)> = vec![];
1767 /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) {
1768 /// dates.push((y, m, d));
1769 /// }
1770 /// assert_eq!(dates, vec![
1771 /// ("1973", "01", "05"),
1772 /// ("1975", "08", "25"),
1773 /// ("1980", "10", "18"),
1774 /// ]);
1775 /// ```
1776 ///
1777 /// # Example: parsing different formats
1778 ///
1779 /// This API is particularly useful when you need to extract a particular
1780 /// value that might occur in a different format. Consider, for example,
1781 /// an identifier that might be in double quotes or single quotes:
1782 ///
1783 /// ```
1784 /// use regex::Regex;
1785 ///
1786 /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"#).unwrap();
1787 /// let hay = r#"The first is id:"foo" and the second is id:'bar'."#;
1788 /// let mut ids = vec![];
1789 /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) {
1790 /// ids.push(id);
1791 /// }
1792 /// assert_eq!(ids, vec!["foo", "bar"]);
1793 /// ```
1794 pub fn extract<const N: usize>(&self) -> (&'h str, [&'h str; N]) {
1795 let len = self
1796 .static_captures_len
1797 .expect("number of capture groups can vary in a match")
1798 .checked_sub(1)
1799 .expect("number of groups is always greater than zero");
1800 assert_eq!(N, len, "asked for {} groups, but must ask for {}", N, len);
1801 // The regex-automata variant of extract is a bit more permissive.
1802 // It doesn't require the number of matching capturing groups to be
1803 // static, and you can even request fewer groups than what's there. So
1804 // this is guaranteed to never panic because we've asserted above that
1805 // the user has requested precisely the number of groups that must be
1806 // present in any match for this regex.
1807 self.caps.extract(self.haystack)
1808 }
1809
1810 /// Expands all instances of `$ref` in `replacement` to the corresponding
1811 /// capture group, and writes them to the `dst` buffer given. A `ref` can
1812 /// be a capture group index or a name. If `ref` doesn't refer to a capture
1813 /// group that participated in the match, then it is replaced with the
1814 /// empty string.
1815 ///
1816 /// # Format
1817 ///
1818 /// The format of the replacement string supports two different kinds of
1819 /// capture references: unbraced and braced.
1820 ///
1821 /// For the unbraced format, the format supported is `$ref` where `name`
1822 /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always
1823 /// the longest possible parse. So for example, `$1a` corresponds to the
1824 /// capture group named `1a` and not the capture group at index `1`. If
1825 /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index
1826 /// itself and not a name.
1827 ///
1828 /// For the braced format, the format supported is `${ref}` where `ref` can
1829 /// be any sequence of bytes except for `}`. If no closing brace occurs,
1830 /// then it is not considered a capture reference. As with the unbraced
1831 /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture
1832 /// group index and not a name.
1833 ///
1834 /// The braced format is useful for exerting precise control over the name
1835 /// of the capture reference. For example, `${1}a` corresponds to the
1836 /// capture group reference `1` followed by the letter `a`, where as `$1a`
1837 /// (as mentioned above) corresponds to the capture group reference `1a`.
1838 /// The braced format is also useful for expressing capture group names
1839 /// that use characters not supported by the unbraced format. For example,
1840 /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`.
1841 ///
1842 /// If a capture group reference is found and it does not refer to a valid
1843 /// capture group, then it will be replaced with the empty string.
1844 ///
1845 /// To write a literal `$`, use `$$`.
1846 ///
1847 /// # Example
1848 ///
1849 /// ```
1850 /// use regex::Regex;
1851 ///
1852 /// let re = Regex::new(
1853 /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
1854 /// ).unwrap();
1855 /// let hay = "On 14-03-2010, I became a Tenneessee lamb.";
1856 /// let caps = re.captures(hay).unwrap();
1857 ///
1858 /// let mut dst = String::new();
1859 /// caps.expand("year=$year, month=$month, day=$day", &mut dst);
1860 /// assert_eq!(dst, "year=2010, month=03, day=14");
1861 /// ```
1862 #[inline]
1863 pub fn expand(&self, replacement: &str, dst: &mut String) {
1864 self.caps.interpolate_string_into(self.haystack, replacement, dst);
1865 }
1866
1867 /// Returns an iterator over all capture groups. This includes both
1868 /// matching and non-matching groups.
1869 ///
1870 /// The iterator always yields at least one matching group: the first group
1871 /// (at index `0`) with no name. Subsequent groups are returned in the order
1872 /// of their opening parenthesis in the regex.
1873 ///
1874 /// The elements yielded have type `Option<Match<'h>>`, where a non-`None`
1875 /// value is present if the capture group matches.
1876 ///
1877 /// # Example
1878 ///
1879 /// ```
1880 /// use regex::Regex;
1881 ///
1882 /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
1883 /// let caps = re.captures("AZ").unwrap();
1884 ///
1885 /// let mut it = caps.iter();
1886 /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("AZ"));
1887 /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("A"));
1888 /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), None);
1889 /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("Z"));
1890 /// assert_eq!(it.next(), None);
1891 /// ```
1892 #[inline]
1893 pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> {
1894 SubCaptureMatches { haystack: self.haystack, it: self.caps.iter() }
1895 }
1896
1897 /// Returns the total number of capture groups. This includes both
1898 /// matching and non-matching groups.
1899 ///
1900 /// The length returned is always equivalent to the number of elements
1901 /// yielded by [`Captures::iter`]. Consequently, the length is always
1902 /// greater than zero since every `Captures` value always includes the
1903 /// match for the entire regex.
1904 ///
1905 /// # Example
1906 ///
1907 /// ```
1908 /// use regex::Regex;
1909 ///
1910 /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
1911 /// let caps = re.captures("AZ").unwrap();
1912 /// assert_eq!(caps.len(), 4);
1913 /// ```
1914 #[inline]
1915 pub fn len(&self) -> usize {
1916 self.caps.group_len()
1917 }
1918}
1919
1920impl<'h> core::fmt::Debug for Captures<'h> {
1921 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
1922 /// A little helper type to provide a nice map-like debug
1923 /// representation for our capturing group spans.
1924 ///
1925 /// regex-automata has something similar, but it includes the pattern
1926 /// ID in its debug output, which is confusing. It also doesn't include
1927 /// that strings that match because a regex-automata `Captures` doesn't
1928 /// borrow the haystack.
1929 struct CapturesDebugMap<'a> {
1930 caps: &'a Captures<'a>,
1931 }
1932
1933 impl<'a> core::fmt::Debug for CapturesDebugMap<'a> {
1934 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1935 let mut map = f.debug_map();
1936 let names =
1937 self.caps.caps.group_info().pattern_names(PatternID::ZERO);
1938 for (group_index, maybe_name) in names.enumerate() {
1939 let key = Key(group_index, maybe_name);
1940 match self.caps.get(group_index) {
1941 None => map.entry(&key, &None::<()>),
1942 Some(mat) => map.entry(&key, &Value(mat)),
1943 };
1944 }
1945 map.finish()
1946 }
1947 }
1948
1949 struct Key<'a>(usize, Option<&'a str>);
1950
1951 impl<'a> core::fmt::Debug for Key<'a> {
1952 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1953 write!(f, "{}", self.0)?;
1954 if let Some(name) = self.1 {
1955 write!(f, "/{:?}", name)?;
1956 }
1957 Ok(())
1958 }
1959 }
1960
1961 struct Value<'a>(Match<'a>);
1962
1963 impl<'a> core::fmt::Debug for Value<'a> {
1964 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1965 write!(
1966 f,
1967 "{}..{}/{:?}",
1968 self.0.start(),
1969 self.0.end(),
1970 self.0.as_str()
1971 )
1972 }
1973 }
1974
1975 f.debug_tuple("Captures")
1976 .field(&CapturesDebugMap { caps: self })
1977 .finish()
1978 }
1979}
1980
1981/// Get a matching capture group's haystack substring by index.
1982///
1983/// The haystack substring returned can't outlive the `Captures` object if this
1984/// method is used, because of how `Index` is defined (normally `a[i]` is part
1985/// of `a` and can't outlive it). To work around this limitation, do that, use
1986/// [`Captures::get`] instead.
1987///
1988/// `'h` is the lifetime of the matched haystack, but the lifetime of the
1989/// `&str` returned by this implementation is the lifetime of the `Captures`
1990/// value itself.
1991///
1992/// # Panics
1993///
1994/// If there is no matching group at the given index.
1995impl<'h> core::ops::Index<usize> for Captures<'h> {
1996 type Output = str;
1997
1998 // The lifetime is written out to make it clear that the &str returned
1999 // does NOT have a lifetime equivalent to 'h.
2000 fn index<'a>(&'a self, i: usize) -> &'a str {
2001 self.get(i)
2002 .map(|m| m.as_str())
2003 .unwrap_or_else(|| panic!("no group at index '{}'", i))
2004 }
2005}
2006
2007/// Get a matching capture group's haystack substring by name.
2008///
2009/// The haystack substring returned can't outlive the `Captures` object if this
2010/// method is used, because of how `Index` is defined (normally `a[i]` is part
2011/// of `a` and can't outlive it). To work around this limitation, do that, use
2012/// [`Captures::name`] instead.
2013///
2014/// `'h` is the lifetime of the matched haystack, but the lifetime of the
2015/// `&str` returned by this implementation is the lifetime of the `Captures`
2016/// value itself.
2017///
2018/// `'n` is the lifetime of the group name used to index the `Captures` value.
2019///
2020/// # Panics
2021///
2022/// If there is no matching group at the given name.
2023impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> {
2024 type Output = str;
2025
2026 fn index<'a>(&'a self, name: &'n str) -> &'a str {
2027 self.name(name)
2028 .map(|m| m.as_str())
2029 .unwrap_or_else(|| panic!("no group named '{}'", name))
2030 }
2031}
2032
2033/// A low level representation of the byte offsets of each capture group.
2034///
2035/// You can think of this as a lower level [`Captures`], where this type does
2036/// not support named capturing groups directly and it does not borrow the
2037/// haystack that these offsets were matched on.
2038///
2039/// Primarily, this type is useful when using the lower level `Regex` APIs such
2040/// as [`Regex::captures_read`], which permits amortizing the allocation in
2041/// which capture match offsets are stored.
2042///
2043/// In order to build a value of this type, you'll need to call the
2044/// [`Regex::capture_locations`] method. The value returned can then be reused
2045/// in subsequent searches for that regex. Using it for other regexes may
2046/// result in a panic or otherwise incorrect results.
2047///
2048/// # Example
2049///
2050/// This example shows how to create and use `CaptureLocations` in a search.
2051///
2052/// ```
2053/// use regex::Regex;
2054///
2055/// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2056/// let mut locs = re.capture_locations();
2057/// let m = re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
2058/// assert_eq!(0..17, m.range());
2059/// assert_eq!(Some((0, 17)), locs.get(0));
2060/// assert_eq!(Some((0, 5)), locs.get(1));
2061/// assert_eq!(Some((6, 17)), locs.get(2));
2062///
2063/// // Asking for an invalid capture group always returns None.
2064/// assert_eq!(None, locs.get(3));
2065/// # // literals are too big for 32-bit usize: #1041
2066/// # #[cfg(target_pointer_width = "64")]
2067/// assert_eq!(None, locs.get(34973498648));
2068/// # #[cfg(target_pointer_width = "64")]
2069/// assert_eq!(None, locs.get(9944060567225171988));
2070/// ```
2071#[derive(Clone, Debug)]
2072pub struct CaptureLocations(captures::Captures);
2073
2074/// A type alias for `CaptureLocations` for backwards compatibility.
2075///
2076/// Previously, we exported `CaptureLocations` as `Locations` in an
2077/// undocumented API. To prevent breaking that code (e.g., in `regex-capi`),
2078/// we continue re-exporting the same undocumented API.
2079#[doc(hidden)]
2080pub type Locations = CaptureLocations;
2081
2082impl CaptureLocations {
2083 /// Returns the start and end byte offsets of the capture group at index
2084 /// `i`. This returns `None` if `i` is not a valid capture group or if the
2085 /// capture group did not match.
2086 ///
2087 /// # Example
2088 ///
2089 /// ```
2090 /// use regex::Regex;
2091 ///
2092 /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2093 /// let mut locs = re.capture_locations();
2094 /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
2095 /// assert_eq!(Some((0, 17)), locs.get(0));
2096 /// assert_eq!(Some((0, 5)), locs.get(1));
2097 /// assert_eq!(Some((6, 17)), locs.get(2));
2098 /// ```
2099 #[inline]
2100 pub fn get(&self, i: usize) -> Option<(usize, usize)> {
2101 self.0.get_group(i).map(|sp| (sp.start, sp.end))
2102 }
2103
2104 /// Returns the total number of capture groups (even if they didn't match).
2105 /// That is, the length returned is unaffected by the result of a search.
2106 ///
2107 /// This is always at least `1` since every regex has at least `1`
2108 /// capturing group that corresponds to the entire match.
2109 ///
2110 /// # Example
2111 ///
2112 /// ```
2113 /// use regex::Regex;
2114 ///
2115 /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2116 /// let mut locs = re.capture_locations();
2117 /// assert_eq!(3, locs.len());
2118 /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
2119 /// assert_eq!(3, locs.len());
2120 /// ```
2121 ///
2122 /// Notice that the length is always at least `1`, regardless of the regex:
2123 ///
2124 /// ```
2125 /// use regex::Regex;
2126 ///
2127 /// let re = Regex::new(r"").unwrap();
2128 /// let locs = re.capture_locations();
2129 /// assert_eq!(1, locs.len());
2130 ///
2131 /// // [a&&b] is a regex that never matches anything.
2132 /// let re = Regex::new(r"[a&&b]").unwrap();
2133 /// let locs = re.capture_locations();
2134 /// assert_eq!(1, locs.len());
2135 /// ```
2136 #[inline]
2137 pub fn len(&self) -> usize {
2138 // self.0.group_len() returns 0 if the underlying captures doesn't
2139 // represent a match, but the behavior guaranteed for this method is
2140 // that the length doesn't change based on a match or not.
2141 self.0.group_info().group_len(PatternID::ZERO)
2142 }
2143
2144 /// An alias for the `get` method for backwards compatibility.
2145 ///
2146 /// Previously, we exported `get` as `pos` in an undocumented API. To
2147 /// prevent breaking that code (e.g., in `regex-capi`), we continue
2148 /// re-exporting the same undocumented API.
2149 #[doc(hidden)]
2150 #[inline]
2151 pub fn pos(&self, i: usize) -> Option<(usize, usize)> {
2152 self.get(i)
2153 }
2154}
2155
2156/// An iterator over all non-overlapping matches in a haystack.
2157///
2158/// This iterator yields [`Match`] values. The iterator stops when no more
2159/// matches can be found.
2160///
2161/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2162/// lifetime of the haystack.
2163///
2164/// This iterator is created by [`Regex::find_iter`].
2165///
2166/// # Time complexity
2167///
2168/// Note that since an iterator runs potentially many searches on the haystack
2169/// and since each search has worst case `O(m * n)` time complexity, the
2170/// overall worst case time complexity for iteration is `O(m * n^2)`.
2171#[derive(Debug)]
2172pub struct Matches<'r, 'h> {
2173 haystack: &'h str,
2174 it: meta::FindMatches<'r, 'h>,
2175}
2176
2177impl<'r, 'h> Iterator for Matches<'r, 'h> {
2178 type Item = Match<'h>;
2179
2180 #[inline]
2181 fn next(&mut self) -> Option<Match<'h>> {
2182 self.it
2183 .next()
2184 .map(|sp| Match::new(self.haystack, sp.start(), sp.end()))
2185 }
2186
2187 #[inline]
2188 fn count(self) -> usize {
2189 // This can actually be up to 2x faster than calling `next()` until
2190 // completion, because counting matches when using a DFA only requires
2191 // finding the end of each match. But returning a `Match` via `next()`
2192 // requires the start of each match which, with a DFA, requires a
2193 // reverse forward scan to find it.
2194 self.it.count()
2195 }
2196}
2197
2198impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {}
2199
2200/// An iterator over all non-overlapping capture matches in a haystack.
2201///
2202/// This iterator yields [`Captures`] values. The iterator stops when no more
2203/// matches can be found.
2204///
2205/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2206/// lifetime of the matched string.
2207///
2208/// This iterator is created by [`Regex::captures_iter`].
2209///
2210/// # Time complexity
2211///
2212/// Note that since an iterator runs potentially many searches on the haystack
2213/// and since each search has worst case `O(m * n)` time complexity, the
2214/// overall worst case time complexity for iteration is `O(m * n^2)`.
2215#[derive(Debug)]
2216pub struct CaptureMatches<'r, 'h> {
2217 haystack: &'h str,
2218 it: meta::CapturesMatches<'r, 'h>,
2219}
2220
2221impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> {
2222 type Item = Captures<'h>;
2223
2224 #[inline]
2225 fn next(&mut self) -> Option<Captures<'h>> {
2226 let static_captures_len = self.it.regex().static_captures_len();
2227 self.it.next().map(|caps| Captures {
2228 haystack: self.haystack,
2229 caps,
2230 static_captures_len,
2231 })
2232 }
2233
2234 #[inline]
2235 fn count(self) -> usize {
2236 // This can actually be up to 2x faster than calling `next()` until
2237 // completion, because counting matches when using a DFA only requires
2238 // finding the end of each match. But returning a `Match` via `next()`
2239 // requires the start of each match which, with a DFA, requires a
2240 // reverse forward scan to find it.
2241 self.it.count()
2242 }
2243}
2244
2245impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {}
2246
2247/// An iterator over all substrings delimited by a regex match.
2248///
2249/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2250/// lifetime of the byte string being split.
2251///
2252/// This iterator is created by [`Regex::split`].
2253///
2254/// # Time complexity
2255///
2256/// Note that since an iterator runs potentially many searches on the haystack
2257/// and since each search has worst case `O(m * n)` time complexity, the
2258/// overall worst case time complexity for iteration is `O(m * n^2)`.
2259#[derive(Debug)]
2260pub struct Split<'r, 'h> {
2261 haystack: &'h str,
2262 it: meta::Split<'r, 'h>,
2263}
2264
2265impl<'r, 'h> Iterator for Split<'r, 'h> {
2266 type Item = &'h str;
2267
2268 #[inline]
2269 fn next(&mut self) -> Option<&'h str> {
2270 self.it.next().map(|span| &self.haystack[span])
2271 }
2272}
2273
2274impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2275
2276/// An iterator over at most `N` substrings delimited by a regex match.
2277///
2278/// The last substring yielded by this iterator will be whatever remains after
2279/// `N-1` splits.
2280///
2281/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2282/// lifetime of the byte string being split.
2283///
2284/// This iterator is created by [`Regex::splitn`].
2285///
2286/// # Time complexity
2287///
2288/// Note that since an iterator runs potentially many searches on the haystack
2289/// and since each search has worst case `O(m * n)` time complexity, the
2290/// overall worst case time complexity for iteration is `O(m * n^2)`.
2291///
2292/// Although note that the worst case time here has an upper bound given
2293/// by the `limit` parameter to [`Regex::splitn`].
2294#[derive(Debug)]
2295pub struct SplitN<'r, 'h> {
2296 haystack: &'h str,
2297 it: meta::SplitN<'r, 'h>,
2298}
2299
2300impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2301 type Item = &'h str;
2302
2303 #[inline]
2304 fn next(&mut self) -> Option<&'h str> {
2305 self.it.next().map(|span| &self.haystack[span])
2306 }
2307
2308 #[inline]
2309 fn size_hint(&self) -> (usize, Option<usize>) {
2310 self.it.size_hint()
2311 }
2312}
2313
2314impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2315
2316/// An iterator over the names of all capture groups in a regex.
2317///
2318/// This iterator yields values of type `Option<&str>` in order of the opening
2319/// capture group parenthesis in the regex pattern. `None` is yielded for
2320/// groups with no name. The first element always corresponds to the implicit
2321/// and unnamed group for the overall match.
2322///
2323/// `'r` is the lifetime of the compiled regular expression.
2324///
2325/// This iterator is created by [`Regex::capture_names`].
2326#[derive(Clone, Debug)]
2327pub struct CaptureNames<'r>(captures::GroupInfoPatternNames<'r>);
2328
2329impl<'r> Iterator for CaptureNames<'r> {
2330 type Item = Option<&'r str>;
2331
2332 #[inline]
2333 fn next(&mut self) -> Option<Option<&'r str>> {
2334 self.0.next()
2335 }
2336
2337 #[inline]
2338 fn size_hint(&self) -> (usize, Option<usize>) {
2339 self.0.size_hint()
2340 }
2341
2342 #[inline]
2343 fn count(self) -> usize {
2344 self.0.count()
2345 }
2346}
2347
2348impl<'r> ExactSizeIterator for CaptureNames<'r> {}
2349
2350impl<'r> core::iter::FusedIterator for CaptureNames<'r> {}
2351
2352/// An iterator over all group matches in a [`Captures`] value.
2353///
2354/// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the
2355/// lifetime of the haystack that the matches are for. The order of elements
2356/// yielded corresponds to the order of the opening parenthesis for the group
2357/// in the regex pattern. `None` is yielded for groups that did not participate
2358/// in the match.
2359///
2360/// The first element always corresponds to the implicit group for the overall
2361/// match. Since this iterator is created by a [`Captures`] value, and a
2362/// `Captures` value is only created when a match occurs, it follows that the
2363/// first element yielded by this iterator is guaranteed to be non-`None`.
2364///
2365/// The lifetime `'c` corresponds to the lifetime of the `Captures` value that
2366/// created this iterator, and the lifetime `'h` corresponds to the originally
2367/// matched haystack.
2368#[derive(Clone, Debug)]
2369pub struct SubCaptureMatches<'c, 'h> {
2370 haystack: &'h str,
2371 it: captures::CapturesPatternIter<'c>,
2372}
2373
2374impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> {
2375 type Item = Option<Match<'h>>;
2376
2377 #[inline]
2378 fn next(&mut self) -> Option<Option<Match<'h>>> {
2379 self.it.next().map(|group| {
2380 group.map(|sp| Match::new(self.haystack, sp.start, sp.end))
2381 })
2382 }
2383
2384 #[inline]
2385 fn size_hint(&self) -> (usize, Option<usize>) {
2386 self.it.size_hint()
2387 }
2388
2389 #[inline]
2390 fn count(self) -> usize {
2391 self.it.count()
2392 }
2393}
2394
2395impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {}
2396
2397impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {}
2398
2399/// A trait for types that can be used to replace matches in a haystack.
2400///
2401/// In general, users of this crate shouldn't need to implement this trait,
2402/// since implementations are already provided for `&str` along with other
2403/// variants of string types, as well as `FnMut(&Captures) -> String` (or any
2404/// `FnMut(&Captures) -> T` where `T: AsRef<str>`). Those cover most use cases,
2405/// but callers can implement this trait directly if necessary.
2406///
2407/// # Example
2408///
2409/// This example shows a basic implementation of the `Replacer` trait. This
2410/// can be done much more simply using the replacement string interpolation
2411/// support (e.g., `$first $last`), but this approach avoids needing to parse
2412/// the replacement string at all.
2413///
2414/// ```
2415/// use regex::{Captures, Regex, Replacer};
2416///
2417/// struct NameSwapper;
2418///
2419/// impl Replacer for NameSwapper {
2420/// fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2421/// dst.push_str(&caps["first"]);
2422/// dst.push_str(" ");
2423/// dst.push_str(&caps["last"]);
2424/// }
2425/// }
2426///
2427/// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
2428/// let result = re.replace("Springsteen, Bruce", NameSwapper);
2429/// assert_eq!(result, "Bruce Springsteen");
2430/// ```
2431pub trait Replacer {
2432 /// Appends possibly empty data to `dst` to replace the current match.
2433 ///
2434 /// The current match is represented by `caps`, which is guaranteed to
2435 /// have a match at capture group `0`.
2436 ///
2437 /// For example, a no-op replacement would be `dst.push_str(&caps[0])`.
2438 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String);
2439
2440 /// Return a fixed unchanging replacement string.
2441 ///
2442 /// When doing replacements, if access to [`Captures`] is not needed (e.g.,
2443 /// the replacement string does not need `$` expansion), then it can be
2444 /// beneficial to avoid finding sub-captures.
2445 ///
2446 /// In general, this is called once for every call to a replacement routine
2447 /// such as [`Regex::replace_all`].
2448 fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>> {
2449 None
2450 }
2451
2452 /// Returns a type that implements `Replacer`, but that borrows and wraps
2453 /// this `Replacer`.
2454 ///
2455 /// This is useful when you want to take a generic `Replacer` (which might
2456 /// not be cloneable) and use it without consuming it, so it can be used
2457 /// more than once.
2458 ///
2459 /// # Example
2460 ///
2461 /// ```
2462 /// use regex::{Regex, Replacer};
2463 ///
2464 /// fn replace_all_twice<R: Replacer>(
2465 /// re: Regex,
2466 /// src: &str,
2467 /// mut rep: R,
2468 /// ) -> String {
2469 /// let dst = re.replace_all(src, rep.by_ref());
2470 /// let dst = re.replace_all(&dst, rep.by_ref());
2471 /// dst.into_owned()
2472 /// }
2473 /// ```
2474 fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> {
2475 ReplacerRef(self)
2476 }
2477}
2478
2479impl<'a> Replacer for &'a str {
2480 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2481 caps.expand(*self, dst);
2482 }
2483
2484 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2485 no_expansion(self)
2486 }
2487}
2488
2489impl<'a> Replacer for &'a String {
2490 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2491 self.as_str().replace_append(caps, dst)
2492 }
2493
2494 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2495 no_expansion(self)
2496 }
2497}
2498
2499impl Replacer for String {
2500 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2501 self.as_str().replace_append(caps, dst)
2502 }
2503
2504 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2505 no_expansion(self)
2506 }
2507}
2508
2509impl<'a> Replacer for Cow<'a, str> {
2510 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2511 self.as_ref().replace_append(caps, dst)
2512 }
2513
2514 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2515 no_expansion(self)
2516 }
2517}
2518
2519impl<'a> Replacer for &'a Cow<'a, str> {
2520 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2521 self.as_ref().replace_append(caps, dst)
2522 }
2523
2524 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2525 no_expansion(self)
2526 }
2527}
2528
2529impl<F, T> Replacer for F
2530where
2531 F: FnMut(&Captures<'_>) -> T,
2532 T: AsRef<str>,
2533{
2534 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2535 dst.push_str((*self)(caps).as_ref());
2536 }
2537}
2538
2539/// A by-reference adaptor for a [`Replacer`].
2540///
2541/// This permits reusing the same `Replacer` value in multiple calls to a
2542/// replacement routine like [`Regex::replace_all`].
2543///
2544/// This type is created by [`Replacer::by_ref`].
2545#[derive(Debug)]
2546pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R);
2547
2548impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> {
2549 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2550 self.0.replace_append(caps, dst)
2551 }
2552
2553 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2554 self.0.no_expansion()
2555 }
2556}
2557
2558/// A helper type for forcing literal string replacement.
2559///
2560/// It can be used with routines like [`Regex::replace`] and
2561/// [`Regex::replace_all`] to do a literal string replacement without expanding
2562/// `$name` to their corresponding capture groups. This can be both convenient
2563/// (to avoid escaping `$`, for example) and faster (since capture groups
2564/// don't need to be found).
2565///
2566/// `'s` is the lifetime of the literal string to use.
2567///
2568/// # Example
2569///
2570/// ```
2571/// use regex::{NoExpand, Regex};
2572///
2573/// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
2574/// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last"));
2575/// assert_eq!(result, "$2 $last");
2576/// ```
2577#[derive(Clone, Debug)]
2578pub struct NoExpand<'s>(pub &'s str);
2579
2580impl<'s> Replacer for NoExpand<'s> {
2581 fn replace_append(&mut self, _: &Captures<'_>, dst: &mut String) {
2582 dst.push_str(self.0);
2583 }
2584
2585 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2586 Some(Cow::Borrowed(self.0))
2587 }
2588}
2589
2590/// Quickly checks the given replacement string for whether interpolation
2591/// should be done on it. It returns `None` if a `$` was found anywhere in the
2592/// given string, which suggests interpolation needs to be done. But if there's
2593/// no `$` anywhere, then interpolation definitely does not need to be done. In
2594/// that case, the given string is returned as a borrowed `Cow`.
2595///
2596/// This is meant to be used to implement the `Replacer::no_expandsion` method
2597/// in its various trait impls.
2598fn no_expansion<T: AsRef<str>>(replacement: &T) -> Option<Cow<'_, str>> {
2599 let replacement = replacement.as_ref();
2600 match crate::find_byte::find_byte(b'$', replacement.as_bytes()) {
2601 Some(_) => None,
2602 None => Some(Cow::Borrowed(replacement)),
2603 }
2604}