ron/value.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
//! Value module.
use std::{
cmp::{Eq, Ordering},
hash::{Hash, Hasher},
iter::FromIterator,
ops::{Index, IndexMut},
};
use serde::{
de::{DeserializeOwned, DeserializeSeed, Deserializer, MapAccess, SeqAccess, Visitor},
forward_to_deserialize_any,
};
use serde_derive::{Deserialize, Serialize};
use crate::{de::Error, error::Result};
/// A [`Value`] to [`Value`] map.
///
/// This structure either uses a [BTreeMap](std::collections::BTreeMap) or the
/// [IndexMap](indexmap::IndexMap) internally.
/// The latter can be used by enabling the `indexmap` feature. This can be used
/// to preserve the order of the parsed map.
#[derive(Clone, Debug, Default, Deserialize, Serialize)]
#[serde(transparent)]
pub struct Map(MapInner);
impl Map {
/// Creates a new, empty [`Map`].
pub fn new() -> Map {
Default::default()
}
/// Returns the number of elements in the map.
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns `true` if `self.len() == 0`, `false` otherwise.
pub fn is_empty(&self) -> bool {
self.0.len() == 0
}
/// Inserts a new element, returning the previous element with this `key` if
/// there was any.
pub fn insert(&mut self, key: Value, value: Value) -> Option<Value> {
self.0.insert(key, value)
}
/// Removes an element by its `key`.
pub fn remove(&mut self, key: &Value) -> Option<Value> {
self.0.remove(key)
}
/// Iterate all key-value pairs.
pub fn iter(&self) -> impl Iterator<Item = (&Value, &Value)> + DoubleEndedIterator {
self.0.iter()
}
/// Iterate all key-value pairs mutably.
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&Value, &mut Value)> + DoubleEndedIterator {
self.0.iter_mut()
}
/// Iterate all keys.
pub fn keys(&self) -> impl Iterator<Item = &Value> + DoubleEndedIterator {
self.0.keys()
}
/// Iterate all values.
pub fn values(&self) -> impl Iterator<Item = &Value> + DoubleEndedIterator {
self.0.values()
}
/// Iterate all values mutably.
pub fn values_mut(&mut self) -> impl Iterator<Item = &mut Value> + DoubleEndedIterator {
self.0.values_mut()
}
/// Retains only the elements specified by the `keep` predicate.
///
/// In other words, remove all pairs `(k, v)` for which `keep(&k, &mut v)`
/// returns `false`.
///
/// The elements are visited in iteration order.
pub fn retain<F>(&mut self, keep: F)
where
F: FnMut(&Value, &mut Value) -> bool,
{
self.0.retain(keep);
}
}
impl FromIterator<(Value, Value)> for Map {
fn from_iter<T: IntoIterator<Item = (Value, Value)>>(iter: T) -> Self {
Map(MapInner::from_iter(iter))
}
}
impl IntoIterator for Map {
type Item = (Value, Value);
type IntoIter = <MapInner as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
/// Note: equality is only given if both values and order of values match
impl Eq for Map {}
impl Hash for Map {
fn hash<H: Hasher>(&self, state: &mut H) {
self.iter().for_each(|x| x.hash(state));
}
}
impl Index<&Value> for Map {
type Output = Value;
fn index(&self, index: &Value) -> &Self::Output {
&self.0[index]
}
}
impl IndexMut<&Value> for Map {
fn index_mut(&mut self, index: &Value) -> &mut Self::Output {
self.0.get_mut(index).expect("no entry found for key")
}
}
impl Ord for Map {
fn cmp(&self, other: &Map) -> Ordering {
self.iter().cmp(other.iter())
}
}
/// Note: equality is only given if both values and order of values match
impl PartialEq for Map {
fn eq(&self, other: &Map) -> bool {
self.iter().zip(other.iter()).all(|(a, b)| a == b)
}
}
impl PartialOrd for Map {
fn partial_cmp(&self, other: &Map) -> Option<Ordering> {
self.iter().partial_cmp(other.iter())
}
}
#[cfg(not(feature = "indexmap"))]
type MapInner = std::collections::BTreeMap<Value, Value>;
#[cfg(feature = "indexmap")]
type MapInner = indexmap::IndexMap<Value, Value>;
/// A wrapper for a number, which can be either [`f64`] or [`i64`].
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Hash, Ord)]
pub enum Number {
Integer(i64),
Float(Float),
}
/// A wrapper for [`f64`], which guarantees that the inner value
/// is finite and thus implements [`Eq`], [`Hash`] and [`Ord`].
#[derive(Copy, Clone, Debug)]
pub struct Float(f64);
impl Float {
/// Construct a new [`Float`].
pub fn new(v: f64) -> Self {
Float(v)
}
/// Returns the wrapped float.
pub fn get(self) -> f64 {
self.0
}
}
impl Number {
/// Construct a new number.
pub fn new(v: impl Into<Number>) -> Self {
v.into()
}
/// Returns the [`f64`] representation of the [`Number`] regardless of
/// whether the number is stored as a float or integer.
///
/// # Example
///
/// ```
/// # use ron::value::Number;
/// let i = Number::new(5);
/// let f = Number::new(2.0);
/// assert_eq!(i.into_f64(), 5.0);
/// assert_eq!(f.into_f64(), 2.0);
/// ```
pub fn into_f64(self) -> f64 {
self.map_to(|i| i as f64, |f| f)
}
/// If the [`Number`] is a float, return it. Otherwise return [`None`].
///
/// # Example
///
/// ```
/// # use ron::value::Number;
/// let i = Number::new(5);
/// let f = Number::new(2.0);
/// assert_eq!(i.as_f64(), None);
/// assert_eq!(f.as_f64(), Some(2.0));
/// ```
pub fn as_f64(self) -> Option<f64> {
self.map_to(|_| None, Some)
}
/// If the [`Number`] is an integer, return it. Otherwise return [`None`].
///
/// # Example
///
/// ```
/// # use ron::value::Number;
/// let i = Number::new(5);
/// let f = Number::new(2.0);
/// assert_eq!(i.as_i64(), Some(5));
/// assert_eq!(f.as_i64(), None);
/// ```
pub fn as_i64(self) -> Option<i64> {
self.map_to(Some, |_| None)
}
/// Map this number to a single type using the appropriate closure.
///
/// # Example
///
/// ```
/// # use ron::value::Number;
/// let i = Number::new(5);
/// let f = Number::new(2.0);
/// assert!(i.map_to(|i| i > 3, |f| f > 3.0));
/// assert!(!f.map_to(|i| i > 3, |f| f > 3.0));
/// ```
pub fn map_to<T>(
self,
integer_fn: impl FnOnce(i64) -> T,
float_fn: impl FnOnce(f64) -> T,
) -> T {
match self {
Number::Integer(i) => integer_fn(i),
Number::Float(Float(f)) => float_fn(f),
}
}
}
impl From<f64> for Number {
fn from(f: f64) -> Number {
Number::Float(Float(f))
}
}
impl From<i64> for Number {
fn from(i: i64) -> Number {
Number::Integer(i)
}
}
impl From<i32> for Number {
fn from(i: i32) -> Number {
Number::Integer(i64::from(i))
}
}
/// The following [`Number`] conversion checks if the integer fits losslessly
/// into an [`i64`], before constructing a [`Number::Integer`] variant.
/// If not, the conversion defaults to [`Number::Float`].
impl From<u64> for Number {
fn from(i: u64) -> Number {
if i <= std::i64::MAX as u64 {
Number::Integer(i as i64)
} else {
Number::new(i as f64)
}
}
}
/// Partial equality comparison
/// In order to be able to use [`Number`] as a mapping key, NaN floating values
/// wrapped in [`Float`] are equal to each other. It is not the case for
/// underlying [`f64`] values itself.
impl PartialEq for Float {
fn eq(&self, other: &Self) -> bool {
self.0.is_nan() && other.0.is_nan() || self.0 == other.0
}
}
/// Equality comparison
/// In order to be able to use [`Float`] as a mapping key, NaN floating values
/// wrapped in [`Float`] are equal to each other. It is not the case for
/// underlying [`f64`] values itself.
impl Eq for Float {}
impl Hash for Float {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u64(self.0.to_bits());
}
}
/// Partial ordering comparison
/// In order to be able to use [`Number`] as a mapping key, NaN floating values
/// wrapped in [`Number`] are equal to each other and are less then any other
/// floating value. It is not the case for the underlying [`f64`] values
/// themselves.
///
/// ```
/// use ron::value::Number;
/// assert!(Number::new(std::f64::NAN) < Number::new(std::f64::NEG_INFINITY));
/// assert_eq!(Number::new(std::f64::NAN), Number::new(std::f64::NAN));
/// ```
impl PartialOrd for Float {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match (self.0.is_nan(), other.0.is_nan()) {
(true, true) => Some(Ordering::Equal),
(true, false) => Some(Ordering::Less),
(false, true) => Some(Ordering::Greater),
_ => self.0.partial_cmp(&other.0),
}
}
}
/// Ordering comparison
/// In order to be able to use [`Float`] as a mapping key, NaN floating values
/// wrapped in [`Float`] are equal to each other and are less then any other
/// floating value. It is not the case for underlying [`f64`] values itself.
/// See the [`PartialEq`] implementation.
impl Ord for Float {
fn cmp(&self, other: &Self) -> Ordering {
self.partial_cmp(other).expect("Bug: Contract violation")
}
}
#[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Value {
Bool(bool),
Char(char),
Map(Map),
Number(Number),
Option(Option<Box<Value>>),
String(String),
Seq(Vec<Value>),
Unit,
}
impl Value {
/// Tries to deserialize this [`Value`] into `T`.
pub fn into_rust<T>(self) -> Result<T>
where
T: DeserializeOwned,
{
T::deserialize(self)
}
}
/// Deserializer implementation for RON [`Value`].
/// This does not support enums (because [`Value`] does not store them).
impl<'de> Deserializer<'de> for Value {
type Error = Error;
forward_to_deserialize_any! {
bool f32 f64 char str string bytes
byte_buf option unit unit_struct newtype_struct seq tuple
tuple_struct map struct enum identifier ignored_any
}
fn deserialize_any<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
match self {
Value::Bool(b) => visitor.visit_bool(b),
Value::Char(c) => visitor.visit_char(c),
Value::Map(m) => {
let old_len = m.len();
let mut items: Vec<(Value, Value)> = m.into_iter().collect();
items.reverse();
let value = visitor.visit_map(MapAccessor {
items: &mut items,
value: None,
})?;
if items.is_empty() {
Ok(value)
} else {
Err(Error::ExpectedDifferentLength {
expected: format!("a map of length {}", old_len - items.len()),
found: old_len,
})
}
}
Value::Number(Number::Float(ref f)) => visitor.visit_f64(f.get()),
Value::Number(Number::Integer(i)) => visitor.visit_i64(i),
Value::Option(Some(o)) => visitor.visit_some(*o),
Value::Option(None) => visitor.visit_none(),
Value::String(s) => visitor.visit_string(s),
Value::Seq(mut seq) => {
let old_len = seq.len();
seq.reverse();
let value = visitor.visit_seq(Seq { seq: &mut seq })?;
if seq.is_empty() {
Ok(value)
} else {
Err(Error::ExpectedDifferentLength {
expected: format!("a sequence of length {}", old_len - seq.len()),
found: old_len,
})
}
}
Value::Unit => visitor.visit_unit(),
}
}
fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_i64(visitor)
}
fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_i64(visitor)
}
fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_i64(visitor)
}
fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
match self {
Value::Number(Number::Integer(i)) => visitor.visit_i64(i),
v => Err(Error::Message(format!("Expected a number, got {:?}", v))),
}
}
fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_u64(visitor)
}
fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_u64(visitor)
}
fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_u64(visitor)
}
fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
match self {
Value::Number(Number::Integer(i)) => visitor.visit_u64(i as u64),
v => Err(Error::Message(format!("Expected a number, got {:?}", v))),
}
}
}
struct MapAccessor<'a> {
items: &'a mut Vec<(Value, Value)>,
value: Option<Value>,
}
impl<'a, 'de> MapAccess<'de> for MapAccessor<'a> {
type Error = Error;
fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>>
where
K: DeserializeSeed<'de>,
{
// The `Vec` is reversed, so we can pop to get the originally first element
match self.items.pop() {
Some((key, value)) => {
self.value = Some(value);
seed.deserialize(key).map(Some)
}
None => Ok(None),
}
}
fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value>
where
V: DeserializeSeed<'de>,
{
match self.value.take() {
Some(value) => seed.deserialize(value),
None => panic!("Contract violation: value before key"),
}
}
fn size_hint(&self) -> Option<usize> {
Some(self.items.len())
}
}
struct Seq<'a> {
seq: &'a mut Vec<Value>,
}
impl<'a, 'de> SeqAccess<'de> for Seq<'a> {
type Error = Error;
fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>>
where
T: DeserializeSeed<'de>,
{
// The `Vec` is reversed, so we can pop to get the originally first element
self.seq
.pop()
.map_or(Ok(None), |v| seed.deserialize(v).map(Some))
}
fn size_hint(&self) -> Option<usize> {
Some(self.seq.len())
}
}
#[cfg(test)]
mod tests {
use std::{collections::BTreeMap, fmt::Debug};
use serde::Deserialize;
use super::*;
fn assert_same<'de, T>(s: &'de str)
where
T: Debug + Deserialize<'de> + PartialEq,
{
use crate::de::from_str;
let direct: T = from_str(s).unwrap();
let value: Value = from_str(s).unwrap();
let value = T::deserialize(value).unwrap();
assert_eq!(direct, value, "Deserialization for {:?} is not the same", s);
}
#[test]
fn boolean() {
assert_same::<bool>("true");
assert_same::<bool>("false");
}
#[test]
fn float() {
assert_same::<f64>("0.123");
assert_same::<f64>("-4.19");
}
#[test]
fn int() {
assert_same::<u32>("626");
assert_same::<i32>("-50");
}
#[test]
fn char() {
assert_same::<char>("'4'");
assert_same::<char>("'c'");
}
#[test]
fn map() {
assert_same::<BTreeMap<char, String>>(
"{
'a': \"Hello\",
'b': \"Bye\",
}",
);
}
#[test]
fn option() {
assert_same::<Option<char>>("Some('a')");
assert_same::<Option<char>>("None");
}
#[test]
fn seq() {
assert_same::<Vec<f64>>("[1.0, 2.0, 3.0, 4.0]");
}
#[test]
fn unit() {
assert_same::<()>("()");
}
}