ron/
value.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
//! Value module.

use std::{
    cmp::{Eq, Ordering},
    hash::{Hash, Hasher},
    iter::FromIterator,
    ops::{Index, IndexMut},
};

use serde::{
    de::{DeserializeOwned, DeserializeSeed, Deserializer, MapAccess, SeqAccess, Visitor},
    forward_to_deserialize_any,
};
use serde_derive::{Deserialize, Serialize};

use crate::{de::Error, error::Result};

/// A [`Value`] to [`Value`] map.
///
/// This structure either uses a [BTreeMap](std::collections::BTreeMap) or the
/// [IndexMap](indexmap::IndexMap) internally.
/// The latter can be used by enabling the `indexmap` feature. This can be used
/// to preserve the order of the parsed map.
#[derive(Clone, Debug, Default, Deserialize, Serialize)]
#[serde(transparent)]
pub struct Map(MapInner);

impl Map {
    /// Creates a new, empty [`Map`].
    pub fn new() -> Map {
        Default::default()
    }

    /// Returns the number of elements in the map.
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns `true` if `self.len() == 0`, `false` otherwise.
    pub fn is_empty(&self) -> bool {
        self.0.len() == 0
    }

    /// Inserts a new element, returning the previous element with this `key` if
    /// there was any.
    pub fn insert(&mut self, key: Value, value: Value) -> Option<Value> {
        self.0.insert(key, value)
    }

    /// Removes an element by its `key`.
    pub fn remove(&mut self, key: &Value) -> Option<Value> {
        self.0.remove(key)
    }

    /// Iterate all key-value pairs.
    pub fn iter(&self) -> impl Iterator<Item = (&Value, &Value)> + DoubleEndedIterator {
        self.0.iter()
    }

    /// Iterate all key-value pairs mutably.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (&Value, &mut Value)> + DoubleEndedIterator {
        self.0.iter_mut()
    }

    /// Iterate all keys.
    pub fn keys(&self) -> impl Iterator<Item = &Value> + DoubleEndedIterator {
        self.0.keys()
    }

    /// Iterate all values.
    pub fn values(&self) -> impl Iterator<Item = &Value> + DoubleEndedIterator {
        self.0.values()
    }

    /// Iterate all values mutably.
    pub fn values_mut(&mut self) -> impl Iterator<Item = &mut Value> + DoubleEndedIterator {
        self.0.values_mut()
    }

    /// Retains only the elements specified by the `keep` predicate.
    ///
    /// In other words, remove all pairs `(k, v)` for which `keep(&k, &mut v)`
    /// returns `false`.
    ///
    /// The elements are visited in iteration order.
    pub fn retain<F>(&mut self, keep: F)
    where
        F: FnMut(&Value, &mut Value) -> bool,
    {
        self.0.retain(keep);
    }
}

impl FromIterator<(Value, Value)> for Map {
    fn from_iter<T: IntoIterator<Item = (Value, Value)>>(iter: T) -> Self {
        Map(MapInner::from_iter(iter))
    }
}

impl IntoIterator for Map {
    type Item = (Value, Value);

    type IntoIter = <MapInner as IntoIterator>::IntoIter;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

/// Note: equality is only given if both values and order of values match
impl Eq for Map {}

impl Hash for Map {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.iter().for_each(|x| x.hash(state));
    }
}

impl Index<&Value> for Map {
    type Output = Value;

    fn index(&self, index: &Value) -> &Self::Output {
        &self.0[index]
    }
}

impl IndexMut<&Value> for Map {
    fn index_mut(&mut self, index: &Value) -> &mut Self::Output {
        self.0.get_mut(index).expect("no entry found for key")
    }
}

impl Ord for Map {
    fn cmp(&self, other: &Map) -> Ordering {
        self.iter().cmp(other.iter())
    }
}

/// Note: equality is only given if both values and order of values match
impl PartialEq for Map {
    fn eq(&self, other: &Map) -> bool {
        self.iter().zip(other.iter()).all(|(a, b)| a == b)
    }
}

impl PartialOrd for Map {
    fn partial_cmp(&self, other: &Map) -> Option<Ordering> {
        self.iter().partial_cmp(other.iter())
    }
}

#[cfg(not(feature = "indexmap"))]
type MapInner = std::collections::BTreeMap<Value, Value>;
#[cfg(feature = "indexmap")]
type MapInner = indexmap::IndexMap<Value, Value>;

/// A wrapper for a number, which can be either [`f64`] or [`i64`].
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Hash, Ord)]
pub enum Number {
    Integer(i64),
    Float(Float),
}

/// A wrapper for [`f64`], which guarantees that the inner value
/// is finite and thus implements [`Eq`], [`Hash`] and [`Ord`].
#[derive(Copy, Clone, Debug)]
pub struct Float(f64);

impl Float {
    /// Construct a new [`Float`].
    pub fn new(v: f64) -> Self {
        Float(v)
    }

    /// Returns the wrapped float.
    pub fn get(self) -> f64 {
        self.0
    }
}

impl Number {
    /// Construct a new number.
    pub fn new(v: impl Into<Number>) -> Self {
        v.into()
    }

    /// Returns the [`f64`] representation of the [`Number`] regardless of
    /// whether the number is stored as a float or integer.
    ///
    /// # Example
    ///
    /// ```
    /// # use ron::value::Number;
    /// let i = Number::new(5);
    /// let f = Number::new(2.0);
    /// assert_eq!(i.into_f64(), 5.0);
    /// assert_eq!(f.into_f64(), 2.0);
    /// ```
    pub fn into_f64(self) -> f64 {
        self.map_to(|i| i as f64, |f| f)
    }

    /// If the [`Number`] is a float, return it. Otherwise return [`None`].
    ///
    /// # Example
    ///
    /// ```
    /// # use ron::value::Number;
    /// let i = Number::new(5);
    /// let f = Number::new(2.0);
    /// assert_eq!(i.as_f64(), None);
    /// assert_eq!(f.as_f64(), Some(2.0));
    /// ```
    pub fn as_f64(self) -> Option<f64> {
        self.map_to(|_| None, Some)
    }

    /// If the [`Number`] is an integer, return it. Otherwise return [`None`].
    ///
    /// # Example
    ///
    /// ```
    /// # use ron::value::Number;
    /// let i = Number::new(5);
    /// let f = Number::new(2.0);
    /// assert_eq!(i.as_i64(), Some(5));
    /// assert_eq!(f.as_i64(), None);
    /// ```
    pub fn as_i64(self) -> Option<i64> {
        self.map_to(Some, |_| None)
    }

    /// Map this number to a single type using the appropriate closure.
    ///
    /// # Example
    ///
    /// ```
    /// # use ron::value::Number;
    /// let i = Number::new(5);
    /// let f = Number::new(2.0);
    /// assert!(i.map_to(|i| i > 3, |f| f > 3.0));
    /// assert!(!f.map_to(|i| i > 3, |f| f > 3.0));
    /// ```
    pub fn map_to<T>(
        self,
        integer_fn: impl FnOnce(i64) -> T,
        float_fn: impl FnOnce(f64) -> T,
    ) -> T {
        match self {
            Number::Integer(i) => integer_fn(i),
            Number::Float(Float(f)) => float_fn(f),
        }
    }
}

impl From<f64> for Number {
    fn from(f: f64) -> Number {
        Number::Float(Float(f))
    }
}

impl From<i64> for Number {
    fn from(i: i64) -> Number {
        Number::Integer(i)
    }
}

impl From<i32> for Number {
    fn from(i: i32) -> Number {
        Number::Integer(i64::from(i))
    }
}

/// The following [`Number`] conversion checks if the integer fits losslessly
/// into an [`i64`], before constructing a [`Number::Integer`] variant.
/// If not, the conversion defaults to [`Number::Float`].

impl From<u64> for Number {
    fn from(i: u64) -> Number {
        if i <= std::i64::MAX as u64 {
            Number::Integer(i as i64)
        } else {
            Number::new(i as f64)
        }
    }
}

/// Partial equality comparison
/// In order to be able to use [`Number`] as a mapping key, NaN floating values
/// wrapped in [`Float`] are equal to each other. It is not the case for
/// underlying [`f64`] values itself.
impl PartialEq for Float {
    fn eq(&self, other: &Self) -> bool {
        self.0.is_nan() && other.0.is_nan() || self.0 == other.0
    }
}

/// Equality comparison
/// In order to be able to use [`Float`] as a mapping key, NaN floating values
/// wrapped in [`Float`] are equal to each other. It is not the case for
/// underlying [`f64`] values itself.
impl Eq for Float {}

impl Hash for Float {
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.write_u64(self.0.to_bits());
    }
}

/// Partial ordering comparison
/// In order to be able to use [`Number`] as a mapping key, NaN floating values
/// wrapped in [`Number`] are equal to each other and are less then any other
/// floating value. It is not the case for the underlying [`f64`] values
/// themselves.
///
/// ```
/// use ron::value::Number;
/// assert!(Number::new(std::f64::NAN) < Number::new(std::f64::NEG_INFINITY));
/// assert_eq!(Number::new(std::f64::NAN), Number::new(std::f64::NAN));
/// ```
impl PartialOrd for Float {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        match (self.0.is_nan(), other.0.is_nan()) {
            (true, true) => Some(Ordering::Equal),
            (true, false) => Some(Ordering::Less),
            (false, true) => Some(Ordering::Greater),
            _ => self.0.partial_cmp(&other.0),
        }
    }
}

/// Ordering comparison
/// In order to be able to use [`Float`] as a mapping key, NaN floating values
/// wrapped in [`Float`] are equal to each other and are less then any other
/// floating value. It is not the case for underlying [`f64`] values itself.
/// See the [`PartialEq`] implementation.
impl Ord for Float {
    fn cmp(&self, other: &Self) -> Ordering {
        self.partial_cmp(other).expect("Bug: Contract violation")
    }
}

#[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Value {
    Bool(bool),
    Char(char),
    Map(Map),
    Number(Number),
    Option(Option<Box<Value>>),
    String(String),
    Seq(Vec<Value>),
    Unit,
}

impl Value {
    /// Tries to deserialize this [`Value`] into `T`.
    pub fn into_rust<T>(self) -> Result<T>
    where
        T: DeserializeOwned,
    {
        T::deserialize(self)
    }
}

/// Deserializer implementation for RON [`Value`].
/// This does not support enums (because [`Value`] does not store them).
impl<'de> Deserializer<'de> for Value {
    type Error = Error;

    forward_to_deserialize_any! {
        bool f32 f64 char str string bytes
        byte_buf option unit unit_struct newtype_struct seq tuple
        tuple_struct map struct enum identifier ignored_any
    }

    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self {
            Value::Bool(b) => visitor.visit_bool(b),
            Value::Char(c) => visitor.visit_char(c),
            Value::Map(m) => {
                let old_len = m.len();

                let mut items: Vec<(Value, Value)> = m.into_iter().collect();
                items.reverse();

                let value = visitor.visit_map(MapAccessor {
                    items: &mut items,
                    value: None,
                })?;

                if items.is_empty() {
                    Ok(value)
                } else {
                    Err(Error::ExpectedDifferentLength {
                        expected: format!("a map of length {}", old_len - items.len()),
                        found: old_len,
                    })
                }
            }
            Value::Number(Number::Float(ref f)) => visitor.visit_f64(f.get()),
            Value::Number(Number::Integer(i)) => visitor.visit_i64(i),
            Value::Option(Some(o)) => visitor.visit_some(*o),
            Value::Option(None) => visitor.visit_none(),
            Value::String(s) => visitor.visit_string(s),
            Value::Seq(mut seq) => {
                let old_len = seq.len();

                seq.reverse();
                let value = visitor.visit_seq(Seq { seq: &mut seq })?;

                if seq.is_empty() {
                    Ok(value)
                } else {
                    Err(Error::ExpectedDifferentLength {
                        expected: format!("a sequence of length {}", old_len - seq.len()),
                        found: old_len,
                    })
                }
            }
            Value::Unit => visitor.visit_unit(),
        }
    }

    fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_i64(visitor)
    }

    fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_i64(visitor)
    }

    fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_i64(visitor)
    }

    fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self {
            Value::Number(Number::Integer(i)) => visitor.visit_i64(i),
            v => Err(Error::Message(format!("Expected a number, got {:?}", v))),
        }
    }

    fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_u64(visitor)
    }

    fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_u64(visitor)
    }

    fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_u64(visitor)
    }

    fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self {
            Value::Number(Number::Integer(i)) => visitor.visit_u64(i as u64),
            v => Err(Error::Message(format!("Expected a number, got {:?}", v))),
        }
    }
}

struct MapAccessor<'a> {
    items: &'a mut Vec<(Value, Value)>,
    value: Option<Value>,
}

impl<'a, 'de> MapAccess<'de> for MapAccessor<'a> {
    type Error = Error;

    fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>>
    where
        K: DeserializeSeed<'de>,
    {
        // The `Vec` is reversed, so we can pop to get the originally first element
        match self.items.pop() {
            Some((key, value)) => {
                self.value = Some(value);
                seed.deserialize(key).map(Some)
            }
            None => Ok(None),
        }
    }

    fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value>
    where
        V: DeserializeSeed<'de>,
    {
        match self.value.take() {
            Some(value) => seed.deserialize(value),
            None => panic!("Contract violation: value before key"),
        }
    }

    fn size_hint(&self) -> Option<usize> {
        Some(self.items.len())
    }
}

struct Seq<'a> {
    seq: &'a mut Vec<Value>,
}

impl<'a, 'de> SeqAccess<'de> for Seq<'a> {
    type Error = Error;

    fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>>
    where
        T: DeserializeSeed<'de>,
    {
        // The `Vec` is reversed, so we can pop to get the originally first element
        self.seq
            .pop()
            .map_or(Ok(None), |v| seed.deserialize(v).map(Some))
    }

    fn size_hint(&self) -> Option<usize> {
        Some(self.seq.len())
    }
}

#[cfg(test)]
mod tests {
    use std::{collections::BTreeMap, fmt::Debug};

    use serde::Deserialize;

    use super::*;

    fn assert_same<'de, T>(s: &'de str)
    where
        T: Debug + Deserialize<'de> + PartialEq,
    {
        use crate::de::from_str;

        let direct: T = from_str(s).unwrap();
        let value: Value = from_str(s).unwrap();
        let value = T::deserialize(value).unwrap();

        assert_eq!(direct, value, "Deserialization for {:?} is not the same", s);
    }

    #[test]
    fn boolean() {
        assert_same::<bool>("true");
        assert_same::<bool>("false");
    }

    #[test]
    fn float() {
        assert_same::<f64>("0.123");
        assert_same::<f64>("-4.19");
    }

    #[test]
    fn int() {
        assert_same::<u32>("626");
        assert_same::<i32>("-50");
    }

    #[test]
    fn char() {
        assert_same::<char>("'4'");
        assert_same::<char>("'c'");
    }

    #[test]
    fn map() {
        assert_same::<BTreeMap<char, String>>(
            "{
'a': \"Hello\",
'b': \"Bye\",
        }",
        );
    }

    #[test]
    fn option() {
        assert_same::<Option<char>>("Some('a')");
        assert_same::<Option<char>>("None");
    }

    #[test]
    fn seq() {
        assert_same::<Vec<f64>>("[1.0, 2.0, 3.0, 4.0]");
    }

    #[test]
    fn unit() {
        assert_same::<()>("()");
    }
}