tracing/
span.rs

1//! Spans represent periods of time in which a program was executing in a
2//! particular context.
3//!
4//! A span consists of [fields], user-defined key-value pairs of arbitrary data
5//! that describe the context the span represents, and a set of fixed attributes
6//! that describe all `tracing` spans and events. Attributes describing spans
7//! include:
8//!
9//! - An [`Id`] assigned by the subscriber that uniquely identifies it in relation
10//!   to other spans.
11//! - The span's [parent] in the trace tree.
12//! - [Metadata] that describes static characteristics of all spans
13//!   originating from that callsite, such as its name, source code location,
14//!   [verbosity level], and the names of its fields.
15//!
16//! # Creating Spans
17//!
18//! Spans are created using the [`span!`] macro. This macro is invoked with the
19//! following arguments, in order:
20//!
21//! - The [`target`] and/or [`parent`][parent] attributes, if the user wishes to
22//!   override their default values.
23//! - The span's [verbosity level]
24//! - A string literal providing the span's name.
25//! - Finally, zero or more arbitrary key/value fields.
26//!
27//! [`target`]: super::Metadata::target
28//!
29//! For example:
30//! ```rust
31//! use tracing::{span, Level};
32//!
33//! /// Construct a new span at the `INFO` level named "my_span", with a single
34//! /// field named answer , with the value `42`.
35//! let my_span = span!(Level::INFO, "my_span", answer = 42);
36//! ```
37//!
38//! The documentation for the [`span!`] macro provides additional examples of
39//! the various options that exist when creating spans.
40//!
41//! The [`trace_span!`], [`debug_span!`], [`info_span!`], [`warn_span!`], and
42//! [`error_span!`] exist as shorthand for constructing spans at various
43//! verbosity levels.
44//!
45//! ## Recording Span Creation
46//!
47//! The [`Attributes`] type contains data associated with a span, and is
48//! provided to the [`Subscriber`] when a new span is created. It contains
49//! the span's metadata, the ID of [the span's parent][parent] if one was
50//! explicitly set, and any fields whose values were recorded when the span was
51//! constructed. The subscriber, which is responsible for recording `tracing`
52//! data, can then store or record these values.
53//!
54//! # The Span Lifecycle
55//!
56//! ## Entering a Span
57//!
58//! A thread of execution is said to _enter_ a span when it begins executing,
59//! and _exit_ the span when it switches to another context. Spans may be
60//! entered through the [`enter`], [`entered`], and [`in_scope`] methods.
61//!
62//! The [`enter`] method enters a span, returning a [guard] that exits the span
63//! when dropped
64//! ```
65//! # use tracing::{span, Level};
66//! let my_var: u64 = 5;
67//! let my_span = span!(Level::TRACE, "my_span", my_var);
68//!
69//! // `my_span` exists but has not been entered.
70//!
71//! // Enter `my_span`...
72//! let _enter = my_span.enter();
73//!
74//! // Perform some work inside of the context of `my_span`...
75//! // Dropping the `_enter` guard will exit the span.
76//!```
77//!
78//! <div class="example-wrap" style="display:inline-block"><pre class="compile_fail" style="white-space:normal;font:inherit;">
79//!     <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
80//!     <code>Span::enter</code> may produce incorrect traces if the returned drop
81//!     guard is held across an await point. See
82//!     <a href="struct.Span.html#in-asynchronous-code">the method documentation</a>
83//!     for details.
84//! </pre></div>
85//!
86//! The [`entered`] method is analogous to [`enter`], but moves the span into
87//! the returned guard, rather than borrowing it. This allows creating and
88//! entering a span in a single expression:
89//!
90//! ```
91//! # use tracing::{span, Level};
92//! // Create a span and enter it, returning a guard:
93//! let span = span!(Level::INFO, "my_span").entered();
94//!
95//! // We are now inside the span! Like `enter()`, the guard returned by
96//! // `entered()` will exit the span when it is dropped...
97//!
98//! // ...but, it can also be exited explicitly, returning the `Span`
99//! // struct:
100//! let span = span.exit();
101//! ```
102//!
103//! Finally, [`in_scope`] takes a closure or function pointer and executes it
104//! inside the span:
105//!
106//! ```
107//! # use tracing::{span, Level};
108//! let my_var: u64 = 5;
109//! let my_span = span!(Level::TRACE, "my_span", my_var = &my_var);
110//!
111//! my_span.in_scope(|| {
112//!     // perform some work in the context of `my_span`...
113//! });
114//!
115//! // Perform some work outside of the context of `my_span`...
116//!
117//! my_span.in_scope(|| {
118//!     // Perform some more work in the context of `my_span`.
119//! });
120//! ```
121//!
122//! <pre class="ignore" style="white-space:normal;font:inherit;">
123//!     <strong>Note</strong>: Since entering a span takes <code>&self</code>, and
124//!     <code>Span</code>s are <code>Clone</code>, <code>Send</code>, and
125//!     <code>Sync</code>, it is entirely valid for multiple threads to enter the
126//!     same span concurrently.
127//! </pre>
128//!
129//! ## Span Relationships
130//!
131//! Spans form a tree structure — unless it is a root span, all spans have a
132//! _parent_, and may have one or more _children_. When a new span is created,
133//! the current span becomes the new span's parent. The total execution time of
134//! a span consists of the time spent in that span and in the entire subtree
135//! represented by its children. Thus, a parent span always lasts for at least
136//! as long as the longest-executing span in its subtree.
137//!
138//! ```
139//! # use tracing::{Level, span};
140//! // this span is considered the "root" of a new trace tree:
141//! span!(Level::INFO, "root").in_scope(|| {
142//!     // since we are now inside "root", this span is considered a child
143//!     // of "root":
144//!     span!(Level::DEBUG, "outer_child").in_scope(|| {
145//!         // this span is a child of "outer_child", which is in turn a
146//!         // child of "root":
147//!         span!(Level::TRACE, "inner_child").in_scope(|| {
148//!             // and so on...
149//!         });
150//!     });
151//!     // another span created here would also be a child of "root".
152//! });
153//!```
154//!
155//! In addition, the parent of a span may be explicitly specified in
156//! the `span!` macro. For example:
157//!
158//! ```rust
159//! # use tracing::{Level, span};
160//! // Create, but do not enter, a span called "foo".
161//! let foo = span!(Level::INFO, "foo");
162//!
163//! // Create and enter a span called "bar".
164//! let bar = span!(Level::INFO, "bar");
165//! let _enter = bar.enter();
166//!
167//! // Although we have currently entered "bar", "baz"'s parent span
168//! // will be "foo".
169//! let baz = span!(parent: &foo, Level::INFO, "baz");
170//! ```
171//!
172//! A child span should typically be considered _part_ of its parent. For
173//! example, if a subscriber is recording the length of time spent in various
174//! spans, it should generally include the time spent in a span's children as
175//! part of that span's duration.
176//!
177//! In addition to having zero or one parent, a span may also _follow from_ any
178//! number of other spans. This indicates a causal relationship between the span
179//! and the spans that it follows from, but a follower is *not* typically
180//! considered part of the duration of the span it follows. Unlike the parent, a
181//! span may record that it follows from another span after it is created, using
182//! the [`follows_from`] method.
183//!
184//! As an example, consider a listener task in a server. As the listener accepts
185//! incoming connections, it spawns new tasks that handle those connections. We
186//! might want to have a span representing the listener, and instrument each
187//! spawned handler task with its own span. We would want our instrumentation to
188//! record that the handler tasks were spawned as a result of the listener task.
189//! However, we might not consider the handler tasks to be _part_ of the time
190//! spent in the listener task, so we would not consider those spans children of
191//! the listener span. Instead, we would record that the handler tasks follow
192//! from the listener, recording the causal relationship but treating the spans
193//! as separate durations.
194//!
195//! ## Closing Spans
196//!
197//! Execution may enter and exit a span multiple times before that span is
198//! _closed_. Consider, for example, a future which has an associated
199//! span and enters that span every time it is polled:
200//! ```rust
201//! # use std::future::Future;
202//! # use std::task::{Context, Poll};
203//! # use std::pin::Pin;
204//! struct MyFuture {
205//!    // data
206//!    span: tracing::Span,
207//! }
208//!
209//! impl Future for MyFuture {
210//!     type Output = ();
211//!
212//!     fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
213//!         let _enter = self.span.enter();
214//!         // Do actual future work...
215//! # Poll::Ready(())
216//!     }
217//! }
218//! ```
219//!
220//! If this future was spawned on an executor, it might yield one or more times
221//! before `poll` returns [`Poll::Ready`]. If the future were to yield, then
222//! the executor would move on to poll the next future, which may _also_ enter
223//! an associated span or series of spans. Therefore, it is valid for a span to
224//! be entered repeatedly before it completes. Only the time when that span or
225//! one of its children was the current span is considered to be time spent in
226//! that span. A span which is not executing and has not yet been closed is said
227//! to be _idle_.
228//!
229//! Because spans may be entered and exited multiple times before they close,
230//! [`Subscriber`]s have separate trait methods which are called to notify them
231//! of span exits and when span handles are dropped. When execution exits a
232//! span, [`exit`] will always be called with that span's ID to notify the
233//! subscriber that the span has been exited. When span handles are dropped, the
234//! [`drop_span`] method is called with that span's ID. The subscriber may use
235//! this to determine whether or not the span will be entered again.
236//!
237//! If there is only a single handle with the capacity to exit a span, dropping
238//! that handle "closes" the span, since the capacity to enter it no longer
239//! exists. For example:
240//! ```
241//! # use tracing::{Level, span};
242//! {
243//!     span!(Level::TRACE, "my_span").in_scope(|| {
244//!         // perform some work in the context of `my_span`...
245//!     }); // --> Subscriber::exit(my_span)
246//!
247//!     // The handle to `my_span` only lives inside of this block; when it is
248//!     // dropped, the subscriber will be informed via `drop_span`.
249//!
250//! } // --> Subscriber::drop_span(my_span)
251//! ```
252//!
253//! However, if multiple handles exist, the span can still be re-entered even if
254//! one or more is dropped. For determining when _all_ handles to a span have
255//! been dropped, `Subscriber`s have a [`clone_span`] method, which is called
256//! every time a span handle is cloned. Combined with `drop_span`, this may be
257//! used to track the number of handles to a given span — if `drop_span` has
258//! been called one more time than the number of calls to `clone_span` for a
259//! given ID, then no more handles to the span with that ID exist. The
260//! subscriber may then treat it as closed.
261//!
262//! # When to use spans
263//!
264//! As a rule of thumb, spans should be used to represent discrete units of work
265//! (e.g., a given request's lifetime in a server) or periods of time spent in a
266//! given context (e.g., time spent interacting with an instance of an external
267//! system, such as a database).
268//!
269//! Which scopes in a program correspond to new spans depend somewhat on user
270//! intent. For example, consider the case of a loop in a program. Should we
271//! construct one span and perform the entire loop inside of that span, like:
272//!
273//! ```rust
274//! # use tracing::{Level, span};
275//! # let n = 1;
276//! let span = span!(Level::TRACE, "my_loop");
277//! let _enter = span.enter();
278//! for i in 0..n {
279//!     # let _ = i;
280//!     // ...
281//! }
282//! ```
283//! Or, should we create a new span for each iteration of the loop, as in:
284//! ```rust
285//! # use tracing::{Level, span};
286//! # let n = 1u64;
287//! for i in 0..n {
288//!     let span = span!(Level::TRACE, "my_loop", iteration = i);
289//!     let _enter = span.enter();
290//!     // ...
291//! }
292//! ```
293//!
294//! Depending on the circumstances, we might want to do either, or both. For
295//! example, if we want to know how long was spent in the loop overall, we would
296//! create a single span around the entire loop; whereas if we wanted to know how
297//! much time was spent in each individual iteration, we would enter a new span
298//! on every iteration.
299//!
300//! [fields]: super::field
301//! [Metadata]: super::Metadata
302//! [verbosity level]: super::Level
303//! [`Poll::Ready`]: std::task::Poll::Ready
304//! [`span!`]: super::span!
305//! [`trace_span!`]: super::trace_span!
306//! [`debug_span!`]: super::debug_span!
307//! [`info_span!`]: super::info_span!
308//! [`warn_span!`]: super::warn_span!
309//! [`error_span!`]: super::error_span!
310//! [`clone_span`]: super::subscriber::Subscriber::clone_span()
311//! [`drop_span`]: super::subscriber::Subscriber::drop_span()
312//! [`exit`]: super::subscriber::Subscriber::exit
313//! [`Subscriber`]: super::subscriber::Subscriber
314//! [`enter`]: Span::enter()
315//! [`entered`]: Span::entered()
316//! [`in_scope`]: Span::in_scope()
317//! [`follows_from`]: Span::follows_from()
318//! [guard]: Entered
319//! [parent]: #span-relationships
320pub use tracing_core::span::{Attributes, Id, Record};
321
322use crate::stdlib::{
323    cmp, fmt,
324    hash::{Hash, Hasher},
325    marker::PhantomData,
326    mem,
327    ops::Deref,
328};
329use crate::{
330    dispatcher::{self, Dispatch},
331    field, Metadata,
332};
333
334/// Trait implemented by types which have a span `Id`.
335pub trait AsId: crate::sealed::Sealed {
336    /// Returns the `Id` of the span that `self` corresponds to, or `None` if
337    /// this corresponds to a disabled span.
338    fn as_id(&self) -> Option<&Id>;
339}
340
341/// A handle representing a span, with the capability to enter the span if it
342/// exists.
343///
344/// If the span was rejected by the current `Subscriber`'s filter, entering the
345/// span will silently do nothing. Thus, the handle can be used in the same
346/// manner regardless of whether or not the trace is currently being collected.
347#[derive(Clone)]
348pub struct Span {
349    /// A handle used to enter the span when it is not executing.
350    ///
351    /// If this is `None`, then the span has either closed or was never enabled.
352    inner: Option<Inner>,
353    /// Metadata describing the span.
354    ///
355    /// This might be `Some` even if `inner` is `None`, in the case that the
356    /// span is disabled but the metadata is needed for `log` support.
357    meta: Option<&'static Metadata<'static>>,
358}
359
360/// A handle representing the capacity to enter a span which is known to exist.
361///
362/// Unlike `Span`, this type is only constructed for spans which _have_ been
363/// enabled by the current filter. This type is primarily used for implementing
364/// span handles; users should typically not need to interact with it directly.
365#[derive(Debug)]
366pub(crate) struct Inner {
367    /// The span's ID, as provided by `subscriber`.
368    id: Id,
369
370    /// The subscriber that will receive events relating to this span.
371    ///
372    /// This should be the same subscriber that provided this span with its
373    /// `id`.
374    subscriber: Dispatch,
375}
376
377/// A guard representing a span which has been entered and is currently
378/// executing.
379///
380/// When the guard is dropped, the span will be exited.
381///
382/// This is returned by the [`Span::enter`] function.
383///
384/// [`Span::enter`]: super::Span::enter
385#[derive(Debug)]
386#[must_use = "once a span has been entered, it should be exited"]
387pub struct Entered<'a> {
388    span: &'a Span,
389}
390
391/// An owned version of [`Entered`], a guard representing a span which has been
392/// entered and is currently executing.
393///
394/// When the guard is dropped, the span will be exited.
395///
396/// This is returned by the [`Span::entered`] function.
397///
398/// [`Span::entered`]: super::Span::entered()
399#[derive(Debug)]
400#[must_use = "once a span has been entered, it should be exited"]
401pub struct EnteredSpan {
402    span: Span,
403
404    /// ```compile_fail
405    /// use tracing::span::*;
406    /// trait AssertSend: Send {}
407    ///
408    /// impl AssertSend for EnteredSpan {}
409    /// ```
410    _not_send: PhantomNotSend,
411}
412
413/// `log` target for all span lifecycle (creation/enter/exit/close) records.
414#[cfg(feature = "log")]
415const LIFECYCLE_LOG_TARGET: &str = "tracing::span";
416/// `log` target for span activity (enter/exit) records.
417#[cfg(feature = "log")]
418const ACTIVITY_LOG_TARGET: &str = "tracing::span::active";
419
420// ===== impl Span =====
421
422impl Span {
423    /// Constructs a new `Span` with the given [metadata] and set of
424    /// [field values].
425    ///
426    /// The new span will be constructed by the currently-active [`Subscriber`],
427    /// with the current span as its parent (if one exists).
428    ///
429    /// After the span is constructed, [field values] and/or [`follows_from`]
430    /// annotations may be added to it.
431    ///
432    /// [metadata]: super::Metadata
433    /// [`Subscriber`]: super::subscriber::Subscriber
434    /// [field values]: super::field::ValueSet
435    /// [`follows_from`]: super::Span::follows_from
436    pub fn new(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
437        dispatcher::get_default(|dispatch| Self::new_with(meta, values, dispatch))
438    }
439
440    #[inline]
441    #[doc(hidden)]
442    pub fn new_with(
443        meta: &'static Metadata<'static>,
444        values: &field::ValueSet<'_>,
445        dispatch: &Dispatch,
446    ) -> Span {
447        let new_span = Attributes::new(meta, values);
448        Self::make_with(meta, new_span, dispatch)
449    }
450
451    /// Constructs a new `Span` as the root of its own trace tree, with the
452    /// given [metadata] and set of [field values].
453    ///
454    /// After the span is constructed, [field values] and/or [`follows_from`]
455    /// annotations may be added to it.
456    ///
457    /// [metadata]: super::Metadata
458    /// [field values]: super::field::ValueSet
459    /// [`follows_from`]: super::Span::follows_from
460    pub fn new_root(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
461        dispatcher::get_default(|dispatch| Self::new_root_with(meta, values, dispatch))
462    }
463
464    #[inline]
465    #[doc(hidden)]
466    pub fn new_root_with(
467        meta: &'static Metadata<'static>,
468        values: &field::ValueSet<'_>,
469        dispatch: &Dispatch,
470    ) -> Span {
471        let new_span = Attributes::new_root(meta, values);
472        Self::make_with(meta, new_span, dispatch)
473    }
474
475    /// Constructs a new `Span` as child of the given parent span, with the
476    /// given [metadata] and set of [field values].
477    ///
478    /// After the span is constructed, [field values] and/or [`follows_from`]
479    /// annotations may be added to it.
480    ///
481    /// [metadata]: super::Metadata
482    /// [field values]: super::field::ValueSet
483    /// [`follows_from`]: super::Span::follows_from
484    pub fn child_of(
485        parent: impl Into<Option<Id>>,
486        meta: &'static Metadata<'static>,
487        values: &field::ValueSet<'_>,
488    ) -> Span {
489        let mut parent = parent.into();
490        dispatcher::get_default(move |dispatch| {
491            Self::child_of_with(Option::take(&mut parent), meta, values, dispatch)
492        })
493    }
494
495    #[inline]
496    #[doc(hidden)]
497    pub fn child_of_with(
498        parent: impl Into<Option<Id>>,
499        meta: &'static Metadata<'static>,
500        values: &field::ValueSet<'_>,
501        dispatch: &Dispatch,
502    ) -> Span {
503        let new_span = match parent.into() {
504            Some(parent) => Attributes::child_of(parent, meta, values),
505            None => Attributes::new_root(meta, values),
506        };
507        Self::make_with(meta, new_span, dispatch)
508    }
509
510    /// Constructs a new disabled span with the given `Metadata`.
511    ///
512    /// This should be used when a span is constructed from a known callsite,
513    /// but the subscriber indicates that it is disabled.
514    ///
515    /// Entering, exiting, and recording values on this span will not notify the
516    /// `Subscriber` but _may_ record log messages if the `log` feature flag is
517    /// enabled.
518    #[inline(always)]
519    pub fn new_disabled(meta: &'static Metadata<'static>) -> Span {
520        Self {
521            inner: None,
522            meta: Some(meta),
523        }
524    }
525
526    /// Constructs a new span that is *completely disabled*.
527    ///
528    /// This can be used rather than `Option<Span>` to represent cases where a
529    /// span is not present.
530    ///
531    /// Entering, exiting, and recording values on this span will do nothing.
532    #[inline(always)]
533    pub const fn none() -> Span {
534        Self {
535            inner: None,
536            meta: None,
537        }
538    }
539
540    /// Returns a handle to the span [considered by the `Subscriber`] to be the
541    /// current span.
542    ///
543    /// If the subscriber indicates that it does not track the current span, or
544    /// that the thread from which this function is called is not currently
545    /// inside a span, the returned span will be disabled.
546    ///
547    /// [considered by the `Subscriber`]:
548    ///     super::subscriber::Subscriber::current_span
549    pub fn current() -> Span {
550        dispatcher::get_default(|dispatch| {
551            if let Some((id, meta)) = dispatch.current_span().into_inner() {
552                let id = dispatch.clone_span(&id);
553                Self {
554                    inner: Some(Inner::new(id, dispatch)),
555                    meta: Some(meta),
556                }
557            } else {
558                Self::none()
559            }
560        })
561    }
562
563    fn make_with(
564        meta: &'static Metadata<'static>,
565        new_span: Attributes<'_>,
566        dispatch: &Dispatch,
567    ) -> Span {
568        let attrs = &new_span;
569        let id = dispatch.new_span(attrs);
570        let inner = Some(Inner::new(id, dispatch));
571
572        let span = Self {
573            inner,
574            meta: Some(meta),
575        };
576
577        if_log_enabled! { *meta.level(), {
578            let target = if attrs.is_empty() {
579                LIFECYCLE_LOG_TARGET
580            } else {
581                meta.target()
582            };
583            let values = attrs.values();
584            span.log(
585                target,
586                level_to_log!(*meta.level()),
587                format_args!("++ {};{}", meta.name(), crate::log::LogValueSet { values, is_first: false }),
588            );
589        }}
590
591        span
592    }
593
594    /// Enters this span, returning a guard that will exit the span when dropped.
595    ///
596    /// If this span is enabled by the current subscriber, then this function will
597    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
598    /// will call [`Subscriber::exit`]. If the span is disabled, this does
599    /// nothing.
600    ///
601    /// # In Asynchronous Code
602    ///
603    /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
604    /// `Span::enter` should be used very carefully or avoided entirely. Holding
605    /// the drop guard returned by `Span::enter` across `.await` points will
606    /// result in incorrect traces. For example,
607    ///
608    /// ```
609    /// # use tracing::info_span;
610    /// # async fn some_other_async_function() {}
611    /// async fn my_async_function() {
612    ///     let span = info_span!("my_async_function");
613    ///
614    ///     // WARNING: This span will remain entered until this
615    ///     // guard is dropped...
616    ///     let _enter = span.enter();
617    ///     // ...but the `await` keyword may yield, causing the
618    ///     // runtime to switch to another task, while remaining in
619    ///     // this span!
620    ///     some_other_async_function().await
621    ///
622    ///     // ...
623    /// }
624    /// ```
625    ///
626    /// The drop guard returned by `Span::enter` exits the span when it is
627    /// dropped. When an async function or async block yields at an `.await`
628    /// point, the current scope is _exited_, but values in that scope are
629    /// **not** dropped (because the async block will eventually resume
630    /// execution from that await point). This means that _another_ task will
631    /// begin executing while _remaining_ in the entered span. This results in
632    /// an incorrect trace.
633    ///
634    /// Instead of using `Span::enter` in asynchronous code, prefer the
635    /// following:
636    ///
637    /// * To enter a span for a synchronous section of code within an async
638    ///   block or function, prefer [`Span::in_scope`]. Since `in_scope` takes a
639    ///   synchronous closure and exits the span when the closure returns, the
640    ///   span will always be exited before the next await point. For example:
641    ///   ```
642    ///   # use tracing::info_span;
643    ///   # async fn some_other_async_function(_: ()) {}
644    ///   async fn my_async_function() {
645    ///       let span = info_span!("my_async_function");
646    ///
647    ///       let some_value = span.in_scope(|| {
648    ///           // run some synchronous code inside the span...
649    ///       });
650    ///
651    ///       // This is okay! The span has already been exited before we reach
652    ///       // the await point.
653    ///       some_other_async_function(some_value).await;
654    ///
655    ///       // ...
656    ///   }
657    ///   ```
658    /// * For instrumenting asynchronous code, `tracing` provides the
659    ///   [`Future::instrument` combinator][instrument] for
660    ///   attaching a span to a future (async function or block). This will
661    ///   enter the span _every_ time the future is polled, and exit it whenever
662    ///   the future yields.
663    ///
664    ///   `Instrument` can be used with an async block inside an async function:
665    ///   ```ignore
666    ///   # use tracing::info_span;
667    ///   use tracing::Instrument;
668    ///
669    ///   # async fn some_other_async_function() {}
670    ///   async fn my_async_function() {
671    ///       let span = info_span!("my_async_function");
672    ///       async move {
673    ///          // This is correct! If we yield here, the span will be exited,
674    ///          // and re-entered when we resume.
675    ///          some_other_async_function().await;
676    ///
677    ///          //more asynchronous code inside the span...
678    ///
679    ///       }
680    ///         // instrument the async block with the span...
681    ///         .instrument(span)
682    ///         // ...and await it.
683    ///         .await
684    ///   }
685    ///   ```
686    ///
687    ///   It can also be used to instrument calls to async functions at the
688    ///   callsite:
689    ///   ```ignore
690    ///   # use tracing::debug_span;
691    ///   use tracing::Instrument;
692    ///
693    ///   # async fn some_other_async_function() {}
694    ///   async fn my_async_function() {
695    ///       let some_value = some_other_async_function()
696    ///          .instrument(debug_span!("some_other_async_function"))
697    ///          .await;
698    ///
699    ///       // ...
700    ///   }
701    ///   ```
702    ///
703    /// * The [`#[instrument]` attribute macro][attr] can automatically generate
704    ///   correct code when used on an async function:
705    ///
706    ///   ```ignore
707    ///   # async fn some_other_async_function() {}
708    ///   #[tracing::instrument(level = "info")]
709    ///   async fn my_async_function() {
710    ///
711    ///       // This is correct! If we yield here, the span will be exited,
712    ///       // and re-entered when we resume.
713    ///       some_other_async_function().await;
714    ///
715    ///       // ...
716    ///
717    ///   }
718    ///   ```
719    ///
720    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
721    /// [`Span::in_scope`]: Span::in_scope()
722    /// [instrument]: crate::Instrument
723    /// [attr]: macro@crate::instrument
724    ///
725    /// # Examples
726    ///
727    /// ```
728    /// # use tracing::{span, Level};
729    /// let span = span!(Level::INFO, "my_span");
730    /// let guard = span.enter();
731    ///
732    /// // code here is within the span
733    ///
734    /// drop(guard);
735    ///
736    /// // code here is no longer within the span
737    ///
738    /// ```
739    ///
740    /// Guards need not be explicitly dropped:
741    ///
742    /// ```
743    /// # use tracing::trace_span;
744    /// fn my_function() -> String {
745    ///     // enter a span for the duration of this function.
746    ///     let span = trace_span!("my_function");
747    ///     let _enter = span.enter();
748    ///
749    ///     // anything happening in functions we call is still inside the span...
750    ///     my_other_function();
751    ///
752    ///     // returning from the function drops the guard, exiting the span.
753    ///     return "Hello world".to_owned();
754    /// }
755    ///
756    /// fn my_other_function() {
757    ///     // ...
758    /// }
759    /// ```
760    ///
761    /// Sub-scopes may be created to limit the duration for which the span is
762    /// entered:
763    ///
764    /// ```
765    /// # use tracing::{info, info_span};
766    /// let span = info_span!("my_great_span");
767    ///
768    /// {
769    ///     let _enter = span.enter();
770    ///
771    ///     // this event occurs inside the span.
772    ///     info!("i'm in the span!");
773    ///
774    ///     // exiting the scope drops the guard, exiting the span.
775    /// }
776    ///
777    /// // this event is not inside the span.
778    /// info!("i'm outside the span!")
779    /// ```
780    ///
781    /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
782    /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
783    /// [`Id`]: super::Id
784    #[inline(always)]
785    pub fn enter(&self) -> Entered<'_> {
786        self.do_enter();
787        Entered { span: self }
788    }
789
790    /// Enters this span, consuming it and returning a [guard][`EnteredSpan`]
791    /// that will exit the span when dropped.
792    ///
793    /// <pre class="compile_fail" style="white-space:normal;font:inherit;">
794    ///     <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
795    ///     <code>Span::entered</code> may produce incorrect traces if the returned drop
796    ///     guard is held across an await point. See <a href="#in-asynchronous-code">the
797    ///     <code>Span::enter</code> documentation</a> for details.
798    /// </pre>
799    ///
800    ///
801    /// If this span is enabled by the current subscriber, then this function will
802    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
803    /// will call [`Subscriber::exit`]. If the span is disabled, this does
804    /// nothing.
805    ///
806    /// This is similar to the [`Span::enter`] method, except that it moves the
807    /// span by value into the returned guard, rather than borrowing it.
808    /// Therefore, this method can be used to create and enter a span in a
809    /// single expression, without requiring a `let`-binding. For example:
810    ///
811    /// ```
812    /// # use tracing::info_span;
813    /// let _span = info_span!("something_interesting").entered();
814    /// ```
815    /// rather than:
816    /// ```
817    /// # use tracing::info_span;
818    /// let span = info_span!("something_interesting");
819    /// let _e = span.enter();
820    /// ```
821    ///
822    /// Furthermore, `entered` may be used when the span must be stored in some
823    /// other struct or be passed to a function while remaining entered.
824    ///
825    /// <pre class="ignore" style="white-space:normal;font:inherit;">
826    ///     <strong>Note</strong>: The returned <a href="../struct.EnteredSpan.html">
827    ///     <code>EnteredSpan</code></a> guard does not implement <code>Send</code>.
828    ///     Dropping the guard will exit <em>this</em> span, and if the guard is sent
829    ///     to another thread and dropped there, that thread may never have entered
830    ///     this span. Thus, <code>EnteredSpan</code>s should not be sent between threads.
831    /// </pre>
832    ///
833    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
834    ///
835    /// # Examples
836    ///
837    /// The returned guard can be [explicitly exited][EnteredSpan::exit],
838    /// returning the un-entered span:
839    ///
840    /// ```
841    /// # use tracing::{Level, span};
842    /// let span = span!(Level::INFO, "doing_something").entered();
843    ///
844    /// // code here is within the span
845    ///
846    /// // explicitly exit the span, returning it
847    /// let span = span.exit();
848    ///
849    /// // code here is no longer within the span
850    ///
851    /// // enter the span again
852    /// let span = span.entered();
853    ///
854    /// // now we are inside the span once again
855    /// ```
856    ///
857    /// Guards need not be explicitly dropped:
858    ///
859    /// ```
860    /// # use tracing::trace_span;
861    /// fn my_function() -> String {
862    ///     // enter a span for the duration of this function.
863    ///     let span = trace_span!("my_function").entered();
864    ///
865    ///     // anything happening in functions we call is still inside the span...
866    ///     my_other_function();
867    ///
868    ///     // returning from the function drops the guard, exiting the span.
869    ///     return "Hello world".to_owned();
870    /// }
871    ///
872    /// fn my_other_function() {
873    ///     // ...
874    /// }
875    /// ```
876    ///
877    /// Since the [`EnteredSpan`] guard can dereference to the [`Span`] itself,
878    /// the span may still be accessed while entered. For example:
879    ///
880    /// ```rust
881    /// # use tracing::info_span;
882    /// use tracing::field;
883    ///
884    /// // create the span with an empty field, and enter it.
885    /// let span = info_span!("my_span", some_field = field::Empty).entered();
886    ///
887    /// // we can still record a value for the field while the span is entered.
888    /// span.record("some_field", &"hello world!");
889    /// ```
890    ///
891
892    /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
893    /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
894    /// [`Id`]: super::Id
895    #[inline(always)]
896    pub fn entered(self) -> EnteredSpan {
897        self.do_enter();
898        EnteredSpan {
899            span: self,
900            _not_send: PhantomNotSend,
901        }
902    }
903
904    /// Returns this span, if it was [enabled] by the current [`Subscriber`], or
905    /// the [current span] (whose lexical distance may be further than expected),
906    ///  if this span [is disabled].
907    ///
908    /// This method can be useful when propagating spans to spawned threads or
909    /// [async tasks]. Consider the following:
910    ///
911    /// ```
912    /// let _parent_span = tracing::info_span!("parent").entered();
913    ///
914    /// // ...
915    ///
916    /// let child_span = tracing::debug_span!("child");
917    ///
918    /// std::thread::spawn(move || {
919    ///     let _entered = child_span.entered();
920    ///
921    ///     tracing::info!("spawned a thread!");
922    ///
923    ///     // ...
924    /// });
925    /// ```
926    ///
927    /// If the current [`Subscriber`] enables the [`DEBUG`] level, then both
928    /// the "parent" and "child" spans will be enabled. Thus, when the "spawaned
929    /// a thread!" event occurs, it will be inside of the "child" span. Because
930    /// "parent" is the parent of "child", the event will _also_ be inside of
931    /// "parent".
932    ///
933    /// However, if the [`Subscriber`] only enables the [`INFO`] level, the "child"
934    /// span will be disabled. When the thread is spawned, the
935    /// `child_span.entered()` call will do nothing, since "child" is not
936    /// enabled. In this case, the "spawned a thread!" event occurs outside of
937    /// *any* span, since the "child" span was responsible for propagating its
938    /// parent to the spawned thread.
939    ///
940    /// If this is not the desired behavior, `Span::or_current` can be used to
941    /// ensure that the "parent" span is propagated in both cases, either as a
942    /// parent of "child" _or_ directly. For example:
943    ///
944    /// ```
945    /// let _parent_span = tracing::info_span!("parent").entered();
946    ///
947    /// // ...
948    ///
949    /// // If DEBUG is enabled, then "child" will be enabled, and `or_current`
950    /// // returns "child". Otherwise, if DEBUG is not enabled, "child" will be
951    /// // disabled, and `or_current` returns "parent".
952    /// let child_span = tracing::debug_span!("child").or_current();
953    ///
954    /// std::thread::spawn(move || {
955    ///     let _entered = child_span.entered();
956    ///
957    ///     tracing::info!("spawned a thread!");
958    ///
959    ///     // ...
960    /// });
961    /// ```
962    ///
963    /// When spawning [asynchronous tasks][async tasks], `Span::or_current` can
964    /// be used similarly, in combination with [`instrument`]:
965    ///
966    /// ```
967    /// use tracing::Instrument;
968    /// # // lol
969    /// # mod tokio {
970    /// #     pub(super) fn spawn(_: impl std::future::Future) {}
971    /// # }
972    ///
973    /// let _parent_span = tracing::info_span!("parent").entered();
974    ///
975    /// // ...
976    ///
977    /// let child_span = tracing::debug_span!("child");
978    ///
979    /// tokio::spawn(
980    ///     async {
981    ///         tracing::info!("spawned a task!");
982    ///
983    ///         // ...
984    ///
985    ///     }.instrument(child_span.or_current())
986    /// );
987    /// ```
988    ///
989    /// In general, `or_current` should be preferred over nesting an
990    /// [`instrument`]  call inside of an [`in_current_span`] call, as using
991    /// `or_current` will be more efficient.
992    ///
993    /// ```
994    /// use tracing::Instrument;
995    /// # // lol
996    /// # mod tokio {
997    /// #     pub(super) fn spawn(_: impl std::future::Future) {}
998    /// # }
999    /// async fn my_async_fn() {
1000    ///     // ...
1001    /// }
1002    ///
1003    /// let _parent_span = tracing::info_span!("parent").entered();
1004    ///
1005    /// // Do this:
1006    /// tokio::spawn(
1007    ///     my_async_fn().instrument(tracing::debug_span!("child").or_current())
1008    /// );
1009    ///
1010    /// // ...rather than this:
1011    /// tokio::spawn(
1012    ///     my_async_fn()
1013    ///         .instrument(tracing::debug_span!("child"))
1014    ///         .in_current_span()
1015    /// );
1016    /// ```
1017    ///
1018    /// [enabled]: crate::Subscriber::enabled
1019    /// [`Subscriber`]: crate::Subscriber
1020    /// [current span]: Span::current
1021    /// [is disabled]: Span::is_disabled
1022    /// [`INFO`]: crate::Level::INFO
1023    /// [`DEBUG`]: crate::Level::DEBUG
1024    /// [async tasks]: std::task
1025    /// [`instrument`]: crate::instrument::Instrument::instrument
1026    /// [`in_current_span`]: crate::instrument::Instrument::in_current_span
1027    pub fn or_current(self) -> Self {
1028        if self.is_disabled() {
1029            return Self::current();
1030        }
1031        self
1032    }
1033
1034    #[inline(always)]
1035    fn do_enter(&self) {
1036        if let Some(inner) = self.inner.as_ref() {
1037            inner.subscriber.enter(&inner.id);
1038        }
1039
1040        if_log_enabled! { crate::Level::TRACE, {
1041            if let Some(_meta) = self.meta {
1042                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("-> {};", _meta.name()));
1043            }
1044        }}
1045    }
1046
1047    // Called from [`Entered`] and [`EnteredSpan`] drops.
1048    //
1049    // Running this behaviour on drop rather than with an explicit function
1050    // call means that spans may still be exited when unwinding.
1051    #[inline(always)]
1052    fn do_exit(&self) {
1053        if let Some(inner) = self.inner.as_ref() {
1054            inner.subscriber.exit(&inner.id);
1055        }
1056
1057        if_log_enabled! { crate::Level::TRACE, {
1058            if let Some(_meta) = self.meta {
1059                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("<- {};", _meta.name()));
1060            }
1061        }}
1062    }
1063
1064    /// Executes the given function in the context of this span.
1065    ///
1066    /// If this span is enabled, then this function enters the span, invokes `f`
1067    /// and then exits the span. If the span is disabled, `f` will still be
1068    /// invoked, but in the context of the currently-executing span (if there is
1069    /// one).
1070    ///
1071    /// Returns the result of evaluating `f`.
1072    ///
1073    /// # Examples
1074    ///
1075    /// ```
1076    /// # use tracing::{trace, span, Level};
1077    /// let my_span = span!(Level::TRACE, "my_span");
1078    ///
1079    /// my_span.in_scope(|| {
1080    ///     // this event occurs within the span.
1081    ///     trace!("i'm in the span!");
1082    /// });
1083    ///
1084    /// // this event occurs outside the span.
1085    /// trace!("i'm not in the span!");
1086    /// ```
1087    ///
1088    /// Calling a function and returning the result:
1089    /// ```
1090    /// # use tracing::{info_span, Level};
1091    /// fn hello_world() -> String {
1092    ///     "Hello world!".to_owned()
1093    /// }
1094    ///
1095    /// let span = info_span!("hello_world");
1096    /// // the span will be entered for the duration of the call to
1097    /// // `hello_world`.
1098    /// let a_string = span.in_scope(hello_world);
1099    ///
1100    pub fn in_scope<F: FnOnce() -> T, T>(&self, f: F) -> T {
1101        let _enter = self.enter();
1102        f()
1103    }
1104
1105    /// Returns a [`Field`][super::field::Field] for the field with the
1106    /// given `name`, if one exists,
1107    pub fn field<Q: field::AsField + ?Sized>(&self, field: &Q) -> Option<field::Field> {
1108        self.metadata().and_then(|meta| field.as_field(meta))
1109    }
1110
1111    /// Returns true if this `Span` has a field for the given
1112    /// [`Field`][super::field::Field] or field name.
1113    #[inline]
1114    pub fn has_field<Q: field::AsField + ?Sized>(&self, field: &Q) -> bool {
1115        self.field(field).is_some()
1116    }
1117
1118    /// Records that the field described by `field` has the value `value`.
1119    ///
1120    /// This may be used with [`field::Empty`] to declare fields whose values
1121    /// are not known when the span is created, and record them later:
1122    /// ```
1123    /// use tracing::{trace_span, field};
1124    ///
1125    /// // Create a span with two fields: `greeting`, with the value "hello world", and
1126    /// // `parting`, without a value.
1127    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1128    ///
1129    /// // ...
1130    ///
1131    /// // Now, record a value for parting as well.
1132    /// // (note that the field name is passed as a string slice)
1133    /// span.record("parting", "goodbye world!");
1134    /// ```
1135    /// However, it may also be used to record a _new_ value for a field whose
1136    /// value was already recorded:
1137    /// ```
1138    /// use tracing::info_span;
1139    /// # fn do_something() -> Result<(), ()> { Err(()) }
1140    ///
1141    /// // Initially, let's assume that our attempt to do something is going okay...
1142    /// let span = info_span!("doing_something", is_okay = true);
1143    /// let _e = span.enter();
1144    ///
1145    /// match do_something() {
1146    ///     Ok(something) => {
1147    ///         // ...
1148    ///     }
1149    ///     Err(_) => {
1150    ///         // Things are no longer okay!
1151    ///         span.record("is_okay", false);
1152    ///     }
1153    /// }
1154    /// ```
1155    ///
1156    /// <pre class="ignore" style="white-space:normal;font:inherit;">
1157    ///     <strong>Note</strong>: The fields associated with a span are part
1158    ///     of its <a href="../struct.Metadata.html"><code>Metadata</code></a>.
1159    ///     The <a href="../struct.Metadata.html"><code>Metadata</code></a>
1160    ///     describing a particular span is constructed statically when the span
1161    ///     is created and cannot be extended later to add new fields. Therefore,
1162    ///     you cannot record a value for a field that was not specified when the
1163    ///     span was created:
1164    /// </pre>
1165    ///
1166    /// ```
1167    /// use tracing::{trace_span, field};
1168    ///
1169    /// // Create a span with two fields: `greeting`, with the value "hello world", and
1170    /// // `parting`, without a value.
1171    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1172    ///
1173    /// // ...
1174    ///
1175    /// // Now, you try to record a value for a new field, `new_field`, which was not
1176    /// // declared as `Empty` or populated when you created `span`.
1177    /// // You won't get any error, but the assignment will have no effect!
1178    /// span.record("new_field", "interesting_value_you_really_need");
1179    ///
1180    /// // Instead, all fields that may be recorded after span creation should be declared up front,
1181    /// // using field::Empty when a value is not known, as we did for `parting`.
1182    /// // This `record` call will indeed replace field::Empty with "you will be remembered".
1183    /// span.record("parting", "you will be remembered");
1184    /// ```
1185    ///
1186    /// [`field::Empty`]: super::field::Empty
1187    /// [`Metadata`]: super::Metadata
1188    pub fn record<Q: field::AsField + ?Sized, V: field::Value>(
1189        &self,
1190        field: &Q,
1191        value: V,
1192    ) -> &Self {
1193        if let Some(meta) = self.meta {
1194            if let Some(field) = field.as_field(meta) {
1195                self.record_all(
1196                    &meta
1197                        .fields()
1198                        .value_set(&[(&field, Some(&value as &dyn field::Value))]),
1199                );
1200            }
1201        }
1202
1203        self
1204    }
1205
1206    /// Records all the fields in the provided `ValueSet`.
1207    pub fn record_all(&self, values: &field::ValueSet<'_>) -> &Self {
1208        let record = Record::new(values);
1209        if let Some(ref inner) = self.inner {
1210            inner.record(&record);
1211        }
1212
1213        if let Some(_meta) = self.meta {
1214            if_log_enabled! { *_meta.level(), {
1215                let target = if record.is_empty() {
1216                    LIFECYCLE_LOG_TARGET
1217                } else {
1218                    _meta.target()
1219                };
1220                self.log(
1221                    target,
1222                    level_to_log!(*_meta.level()),
1223                    format_args!("{};{}", _meta.name(), crate::log::LogValueSet { values, is_first: false }),
1224                );
1225            }}
1226        }
1227
1228        self
1229    }
1230
1231    /// Returns `true` if this span was disabled by the subscriber and does not
1232    /// exist.
1233    ///
1234    /// See also [`is_none`].
1235    ///
1236    /// [`is_none`]: Span::is_none()
1237    #[inline]
1238    pub fn is_disabled(&self) -> bool {
1239        self.inner.is_none()
1240    }
1241
1242    /// Returns `true` if this span was constructed by [`Span::none`] and is
1243    /// empty.
1244    ///
1245    /// If `is_none` returns `true` for a given span, then [`is_disabled`] will
1246    /// also return `true`. However, when a span is disabled by the subscriber
1247    /// rather than constructed by `Span::none`, this method will return
1248    /// `false`, while `is_disabled` will return `true`.
1249    ///
1250    /// [`Span::none`]: Span::none()
1251    /// [`is_disabled`]: Span::is_disabled()
1252    #[inline]
1253    pub fn is_none(&self) -> bool {
1254        self.is_disabled() && self.meta.is_none()
1255    }
1256
1257    /// Indicates that the span with the given ID has an indirect causal
1258    /// relationship with this span.
1259    ///
1260    /// This relationship differs somewhat from the parent-child relationship: a
1261    /// span may have any number of prior spans, rather than a single one; and
1262    /// spans are not considered to be executing _inside_ of the spans they
1263    /// follow from. This means that a span may close even if subsequent spans
1264    /// that follow from it are still open, and time spent inside of a
1265    /// subsequent span should not be included in the time its precedents were
1266    /// executing. This is used to model causal relationships such as when a
1267    /// single future spawns several related background tasks, et cetera.
1268    ///
1269    /// If this span is disabled, or the resulting follows-from relationship
1270    /// would be invalid, this function will do nothing.
1271    ///
1272    /// # Examples
1273    ///
1274    /// Setting a `follows_from` relationship with a `Span`:
1275    /// ```
1276    /// # use tracing::{span, Id, Level, Span};
1277    /// let span1 = span!(Level::INFO, "span_1");
1278    /// let span2 = span!(Level::DEBUG, "span_2");
1279    /// span2.follows_from(span1);
1280    /// ```
1281    ///
1282    /// Setting a `follows_from` relationship with the current span:
1283    /// ```
1284    /// # use tracing::{span, Id, Level, Span};
1285    /// let span = span!(Level::INFO, "hello!");
1286    /// span.follows_from(Span::current());
1287    /// ```
1288    ///
1289    /// Setting a `follows_from` relationship with a `Span` reference:
1290    /// ```
1291    /// # use tracing::{span, Id, Level, Span};
1292    /// let span = span!(Level::INFO, "hello!");
1293    /// let curr = Span::current();
1294    /// span.follows_from(&curr);
1295    /// ```
1296    ///
1297    /// Setting a `follows_from` relationship with an `Id`:
1298    /// ```
1299    /// # use tracing::{span, Id, Level, Span};
1300    /// let span = span!(Level::INFO, "hello!");
1301    /// let id = span.id();
1302    /// span.follows_from(id);
1303    /// ```
1304    pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Self {
1305        if let Some(ref inner) = self.inner {
1306            if let Some(from) = from.into() {
1307                inner.follows_from(&from);
1308            }
1309        }
1310        self
1311    }
1312
1313    /// Returns this span's `Id`, if it is enabled.
1314    pub fn id(&self) -> Option<Id> {
1315        self.inner.as_ref().map(Inner::id)
1316    }
1317
1318    /// Returns this span's `Metadata`, if it is enabled.
1319    pub fn metadata(&self) -> Option<&'static Metadata<'static>> {
1320        self.meta
1321    }
1322
1323    #[cfg(feature = "log")]
1324    #[inline]
1325    fn log(&self, target: &str, level: log::Level, message: fmt::Arguments<'_>) {
1326        if let Some(meta) = self.meta {
1327            if level_to_log!(*meta.level()) <= log::max_level() {
1328                let logger = log::logger();
1329                let log_meta = log::Metadata::builder().level(level).target(target).build();
1330                if logger.enabled(&log_meta) {
1331                    if let Some(ref inner) = self.inner {
1332                        logger.log(
1333                            &log::Record::builder()
1334                                .metadata(log_meta)
1335                                .module_path(meta.module_path())
1336                                .file(meta.file())
1337                                .line(meta.line())
1338                                .args(format_args!("{} span={}", message, inner.id.into_u64()))
1339                                .build(),
1340                        );
1341                    } else {
1342                        logger.log(
1343                            &log::Record::builder()
1344                                .metadata(log_meta)
1345                                .module_path(meta.module_path())
1346                                .file(meta.file())
1347                                .line(meta.line())
1348                                .args(message)
1349                                .build(),
1350                        );
1351                    }
1352                }
1353            }
1354        }
1355    }
1356
1357    /// Invokes a function with a reference to this span's ID and subscriber.
1358    ///
1359    /// if this span is enabled, the provided function is called, and the result is returned.
1360    /// If the span is disabled, the function is not called, and this method returns `None`
1361    /// instead.
1362    pub fn with_subscriber<T>(&self, f: impl FnOnce((&Id, &Dispatch)) -> T) -> Option<T> {
1363        self.inner
1364            .as_ref()
1365            .map(|inner| f((&inner.id, &inner.subscriber)))
1366    }
1367}
1368
1369impl cmp::PartialEq for Span {
1370    fn eq(&self, other: &Self) -> bool {
1371        match (&self.meta, &other.meta) {
1372            (Some(this), Some(that)) => {
1373                this.callsite() == that.callsite() && self.inner == other.inner
1374            }
1375            _ => false,
1376        }
1377    }
1378}
1379
1380impl Hash for Span {
1381    fn hash<H: Hasher>(&self, hasher: &mut H) {
1382        self.inner.hash(hasher);
1383    }
1384}
1385
1386impl fmt::Debug for Span {
1387    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1388        let mut span = f.debug_struct("Span");
1389        if let Some(meta) = self.meta {
1390            span.field("name", &meta.name())
1391                .field("level", &meta.level())
1392                .field("target", &meta.target());
1393
1394            if let Some(ref inner) = self.inner {
1395                span.field("id", &inner.id());
1396            } else {
1397                span.field("disabled", &true);
1398            }
1399
1400            if let Some(ref path) = meta.module_path() {
1401                span.field("module_path", &path);
1402            }
1403
1404            if let Some(ref line) = meta.line() {
1405                span.field("line", &line);
1406            }
1407
1408            if let Some(ref file) = meta.file() {
1409                span.field("file", &file);
1410            }
1411        } else {
1412            span.field("none", &true);
1413        }
1414
1415        span.finish()
1416    }
1417}
1418
1419impl<'a> From<&'a Span> for Option<&'a Id> {
1420    fn from(span: &'a Span) -> Self {
1421        span.inner.as_ref().map(|inner| &inner.id)
1422    }
1423}
1424
1425impl<'a> From<&'a Span> for Option<Id> {
1426    fn from(span: &'a Span) -> Self {
1427        span.inner.as_ref().map(Inner::id)
1428    }
1429}
1430
1431impl From<Span> for Option<Id> {
1432    fn from(span: Span) -> Self {
1433        span.inner.as_ref().map(Inner::id)
1434    }
1435}
1436
1437impl<'a> From<&'a EnteredSpan> for Option<&'a Id> {
1438    fn from(span: &'a EnteredSpan) -> Self {
1439        span.inner.as_ref().map(|inner| &inner.id)
1440    }
1441}
1442
1443impl<'a> From<&'a EnteredSpan> for Option<Id> {
1444    fn from(span: &'a EnteredSpan) -> Self {
1445        span.inner.as_ref().map(Inner::id)
1446    }
1447}
1448
1449impl Drop for Span {
1450    #[inline(always)]
1451    fn drop(&mut self) {
1452        if let Some(Inner {
1453            ref id,
1454            ref subscriber,
1455        }) = self.inner
1456        {
1457            subscriber.try_close(id.clone());
1458        }
1459
1460        if_log_enabled! { crate::Level::TRACE, {
1461            if let Some(meta) = self.meta {
1462                self.log(
1463                    LIFECYCLE_LOG_TARGET,
1464                    log::Level::Trace,
1465                    format_args!("-- {};", meta.name()),
1466                );
1467            }
1468        }}
1469    }
1470}
1471
1472// ===== impl Inner =====
1473
1474impl Inner {
1475    /// Indicates that the span with the given ID has an indirect causal
1476    /// relationship with this span.
1477    ///
1478    /// This relationship differs somewhat from the parent-child relationship: a
1479    /// span may have any number of prior spans, rather than a single one; and
1480    /// spans are not considered to be executing _inside_ of the spans they
1481    /// follow from. This means that a span may close even if subsequent spans
1482    /// that follow from it are still open, and time spent inside of a
1483    /// subsequent span should not be included in the time its precedents were
1484    /// executing. This is used to model causal relationships such as when a
1485    /// single future spawns several related background tasks, et cetera.
1486    ///
1487    /// If this span is disabled, this function will do nothing. Otherwise, it
1488    /// returns `Ok(())` if the other span was added as a precedent of this
1489    /// span, or an error if this was not possible.
1490    fn follows_from(&self, from: &Id) {
1491        self.subscriber.record_follows_from(&self.id, from)
1492    }
1493
1494    /// Returns the span's ID.
1495    fn id(&self) -> Id {
1496        self.id.clone()
1497    }
1498
1499    fn record(&self, values: &Record<'_>) {
1500        self.subscriber.record(&self.id, values)
1501    }
1502
1503    fn new(id: Id, subscriber: &Dispatch) -> Self {
1504        Inner {
1505            id,
1506            subscriber: subscriber.clone(),
1507        }
1508    }
1509}
1510
1511impl cmp::PartialEq for Inner {
1512    fn eq(&self, other: &Self) -> bool {
1513        self.id == other.id
1514    }
1515}
1516
1517impl Hash for Inner {
1518    fn hash<H: Hasher>(&self, state: &mut H) {
1519        self.id.hash(state);
1520    }
1521}
1522
1523impl Clone for Inner {
1524    fn clone(&self) -> Self {
1525        Inner {
1526            id: self.subscriber.clone_span(&self.id),
1527            subscriber: self.subscriber.clone(),
1528        }
1529    }
1530}
1531
1532// ===== impl Entered =====
1533
1534impl EnteredSpan {
1535    /// Returns this span's `Id`, if it is enabled.
1536    pub fn id(&self) -> Option<Id> {
1537        self.inner.as_ref().map(Inner::id)
1538    }
1539
1540    /// Exits this span, returning the underlying [`Span`].
1541    #[inline]
1542    pub fn exit(mut self) -> Span {
1543        // One does not simply move out of a struct with `Drop`.
1544        let span = mem::replace(&mut self.span, Span::none());
1545        span.do_exit();
1546        span
1547    }
1548}
1549
1550impl Deref for EnteredSpan {
1551    type Target = Span;
1552
1553    #[inline]
1554    fn deref(&self) -> &Span {
1555        &self.span
1556    }
1557}
1558
1559impl<'a> Drop for Entered<'a> {
1560    #[inline(always)]
1561    fn drop(&mut self) {
1562        self.span.do_exit()
1563    }
1564}
1565
1566impl Drop for EnteredSpan {
1567    #[inline(always)]
1568    fn drop(&mut self) {
1569        self.span.do_exit()
1570    }
1571}
1572
1573/// Technically, `EnteredSpan` _can_ implement both `Send` *and*
1574/// `Sync` safely. It doesn't, because it has a `PhantomNotSend` field,
1575/// specifically added in order to make it `!Send`.
1576///
1577/// Sending an `EnteredSpan` guard between threads cannot cause memory unsafety.
1578/// However, it *would* result in incorrect behavior, so we add a
1579/// `PhantomNotSend` to prevent it from being sent between threads. This is
1580/// because it must be *dropped* on the same thread that it was created;
1581/// otherwise, the span will never be exited on the thread where it was entered,
1582/// and it will attempt to exit the span on a thread that may never have entered
1583/// it. However, we still want them to be `Sync` so that a struct holding an
1584/// `Entered` guard can be `Sync`.
1585///
1586/// Thus, this is totally safe.
1587#[derive(Debug)]
1588struct PhantomNotSend {
1589    ghost: PhantomData<*mut ()>,
1590}
1591
1592#[allow(non_upper_case_globals)]
1593const PhantomNotSend: PhantomNotSend = PhantomNotSend { ghost: PhantomData };
1594
1595/// # Safety
1596///
1597/// Trivially safe, as `PhantomNotSend` doesn't have any API.
1598unsafe impl Sync for PhantomNotSend {}
1599
1600#[cfg(test)]
1601mod test {
1602    use super::*;
1603
1604    #[test]
1605    fn test_record_backwards_compat() {
1606        Span::current().record("some-key", "some text");
1607        Span::current().record("some-key", false);
1608    }
1609}