trackball/
clamp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use crate::{Delta, Frame, Plane, Scope};
use core::fmt::Debug;
use nalgebra::{Point3, RealField, UnitQuaternion};

/// Clamp wrt abstract boundary conditions of [`Frame`] and [`Scope`].
///
/// Specific boundary conditions are defined by trait implementations (e.g., [`Bound`]).
///
/// Exceeding a boundary condition is communicated by specifying an exceeded plane. If the plane is
/// orthogonal to [`Delta`], it is completely stopped. If not, it glides along the plane. In this
/// case, the direction of [`Delta`] is changed by projecting the exceeded position onto the
/// boundary plane and finding the [`Delta`] from initial to projected position. This projected
/// [`Delta`] is repeatedly revalidated wrt boundary conditions until no new boundary plane is
/// exceeded. For orthogonal boundary conditions (e.g., a box), revalidation usually passes after
/// one, two, or three loops whenever zero, one, or two boundary conditions intersect (i.e., face,
/// edge, or corner).
///
/// [`Bound`]: crate::Bound
pub trait Clamp<N: Copy + RealField>: Send + Sync + Debug + 'static {
	/// Maximum loops due to maximum possible boundary plane intersections.
	///
	/// Measure to break out of validation loop as last resort. Default is `100`. Round boundary
	/// conditions require more loops whereas flat ones should stop with the 3rd validation
	/// (i.e., a corner) for each validated position (e.g., target, eye).
	#[must_use]
	fn loops(&self) -> usize {
		100
	}

	/// Exceeded boundary plane for target position in world space.
	///
	/// Must return `None` if target position satisfies all boundary conditions.
	#[must_use]
	fn target(&self, frame: &Frame<N>) -> Option<Plane<N>>;
	/// Exceeded boundary plane for eye position in world space.
	///
	/// Must return `None` if eye position satisfies all boundary conditions.
	#[must_use]
	fn eye(&self, frame: &Frame<N>) -> Option<Plane<N>>;
	/// Exceeded boundary plane for up position in world space.
	///
	/// Must return `None` if up position satisfies all boundary conditions.
	#[must_use]
	fn up(&self, frame: &Frame<N>) -> Option<Plane<N>>;

	/// Computes clamped [`Delta`] wrt abstract boundary conditions of [`Frame`] and [`Scope`].
	///
	/// Returns `None` if [`Delta`] satisfies all boundary conditions.
	#[allow(clippy::too_many_lines)]
	#[must_use]
	fn compute(
		&self,
		frame: &Frame<N>,
		scope: &Scope<N>,
		delta: &Delta<N>,
	) -> Option<(Delta<N>, usize)> {
		match delta {
			Delta::Frame => None,
			&Delta::First {
				pitch: _,
				yaw: _,
				yaw_axis,
			} => {
				let eye = frame.eye();
				let distance = frame.distance();
				let pitch_axis = frame.pitch_axis();
				// Old target position in eye space.
				let old_target = frame.target() - eye;
				let mut min_delta = *delta;
				let mut loops = 0;
				loop {
					let frame = min_delta.transform(frame);
					let mut bound = false;
					if let Some(plane) = self.target(&frame) {
						bound = true;
						// Center of spherical cap in world space.
						let center = plane.project_point(&eye);
						// Height of spherical cap.
						let height = distance - (center - eye).norm();
						// Radius of spherical cap.
						let radius = (height * (distance * (N::one() + N::one()) - height)).sqrt();
						// New clamped target position in spherical cap space.
						let new_target = (plane.project_point(frame.target()) - center)
							.normalize()
							.scale(radius);
						// New clamped target position in world space.
						let new_target = center + new_target;
						// New clamped target position in eye space.
						let new_target = new_target - eye;

						// Extract new signed pitch.
						let pitch_plane = Plane::with_point(pitch_axis, &eye);
						let old_pitch_target = pitch_plane.project_vector(&old_target);
						let new_pitch_target = pitch_plane.project_vector(&new_target);
						let pitch = pitch_plane.angle_between(&old_pitch_target, &new_pitch_target);
						// Apply signed pitch to old target.
						let pitch_rot = UnitQuaternion::from_axis_angle(&pitch_axis, pitch);
						let old_target = pitch_rot * old_target;
						// Extract left-over signed yaw.
						let yaw_plane = Plane::with_point(yaw_axis, &eye);
						let old_yaw_target = yaw_plane.project_vector(&old_target);
						let new_yaw_target = yaw_plane.project_vector(&new_target);
						let yaw = yaw_plane.angle_between(&old_yaw_target, &new_yaw_target);

						// FIXME It stutters and seems that roll attitude isn't preserved.
						#[allow(clippy::no_effect_underscore_binding)]
						let _min_delta = Delta::First {
							pitch,
							yaw,
							yaw_axis,
						};
						min_delta = Delta::Frame;
					}
					if bound {
						if loops == self.loops() {
							break;
						}
						loops += 1;
					} else {
						break;
					}
				}
				(min_delta != *delta).then_some((min_delta, loops))
			}
			Delta::Track { vec: _ } => {
				let old_frame = frame;
				let old_target = frame.target();
				let old_rot_inverse = frame.view().rotation.inverse();
				let mut min_delta = *delta;
				let mut loops = 0;
				loop {
					let frame = min_delta.transform(old_frame);
					let mut bound = false;
					if let Some(plane) = self.target(&frame) {
						bound = true;
						let new_target = plane.project_point(frame.target());
						let vec = old_rot_inverse * (new_target - old_target);
						min_delta = Delta::Track { vec };
					}
					let frame = min_delta.transform(old_frame);
					if let Some(_plane) = self.up(&frame) {
						bound = true;
						// TODO Implement gliding.
						min_delta = Delta::Frame;
					}
					if bound {
						if loops == self.loops() {
							break;
						}
						loops += 1;
					} else {
						break;
					}
				}
				(min_delta != *delta).then_some((min_delta, loops))
			}
			&Delta::Orbit { rot: _, pos } => {
				if pos != Point3::origin() {
					return Some((Delta::Frame, 0));
				}
				let old_frame = frame;
				let distance = frame.distance();
				let target = frame.target();
				// Rotation from world to camera space for eye in target space.
				let old_rot_inverse = frame.view().rotation.inverse();
				// Old eye position in camera space.
				let old_eye = old_rot_inverse * (frame.eye() - target);
				let mut min_delta = *delta;
				let mut loops = 0;
				loop {
					let mut bound = false;
					let frame = min_delta.transform(old_frame);
					if let Some(plane) = self.eye(&frame) {
						bound = true;
						// Center of spherical cap in world space.
						let center = plane.project_point(target);
						// Height of spherical cap.
						let height = distance - (center - target).norm();
						// Radius of spherical cap.
						let radius = (height * (distance * (N::one() + N::one()) - height)).sqrt();
						// New clamped eye position in spherical cap space.
						let new_eye = (plane.project_point(&frame.eye()) - center)
							.normalize()
							.scale(radius);
						// New clamped eye position in world space.
						let new_eye = center + new_eye;
						// New clamped eye position in camera space.
						let new_eye = old_rot_inverse * (new_eye - target);
						// New delta rotation in camera space.
						let rot = UnitQuaternion::rotation_between(&old_eye, &new_eye)
							.unwrap_or_default();
						min_delta = Delta::Orbit { rot, pos };
					}
					let frame = min_delta.transform(old_frame);
					if let Some(_plane) = self.up(&frame) {
						bound = true;
						// TODO Implement gliding.
						min_delta = Delta::Frame;
					}
					if bound {
						if loops == self.loops() {
							break;
						}
						loops += 1;
					} else {
						break;
					}
				}
				(min_delta != *delta).then_some((min_delta, loops))
			}
			Delta::Slide { vec: _ } => {
				let old_frame = frame;
				let old_target = frame.target();
				let old_rot_inverse = frame.view().rotation.inverse();
				let old_eye = frame.eye();
				let mut min_delta = *delta;
				let mut loops = 0;
				loop {
					let frame = min_delta.transform(old_frame);
					let mut bound = false;
					if let Some(plane) = self.target(&frame) {
						bound = true;
						let new_target = plane.project_point(frame.target());
						let vec = old_rot_inverse * (new_target - old_target);
						min_delta = Delta::Slide { vec };
					}
					let frame = min_delta.transform(old_frame);
					if let Some(plane) = self.eye(&frame) {
						bound = true;
						let new_eye = plane.project_point(&frame.eye());
						let vec = old_rot_inverse * (new_eye - old_eye);
						min_delta = Delta::Slide { vec };
					}
					if bound {
						if loops == self.loops() {
							break;
						}
						loops += 1;
					} else {
						break;
					}
				}
				(min_delta != *delta).then_some((min_delta, loops))
			}
			&Delta::Scale { mut rat, pos } => {
				let old_zat = frame.distance();
				let mut min_delta = *delta;
				let mut loops = 0;
				loop {
					let frame = min_delta.transform(frame);
					let mut bound = false;
					if let Some(_plane) = self.eye(&frame) {
						bound = true;
						// TODO Implement gliding.
						min_delta = Delta::Frame;
					}
					if scope.scale() {
						let (znear, _zfar) = scope.clip_planes(N::zero());
						let min_zat = -znear * (N::one() + N::default_epsilon().sqrt());
						let new_zat = old_zat * rat;
						if new_zat < min_zat {
							bound = true;
							// TODO Implement gliding.
							rat = min_zat / old_zat;
							min_delta = Delta::Scale { rat, pos };
						}
					}
					if bound {
						if loops == self.loops() {
							break;
						}
						loops += 1;
					} else {
						break;
					}
				}
				(min_delta != *delta).then_some((min_delta, loops))
			}
		}
	}
}