trackball/
image.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
use crate::{Frame, Scope};
use nalgebra::{convert, zero, Isometry3, Matrix4, Point2, Point3, RealField, Vector2, Vector3};
use simba::scalar::SubsetOf;

/// Image as projection of [`Scope`] wrt [`Frame`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Image<N: Copy + RealField> {
	/// Current position in screen space of hovering input or pointing device.
	pos: Point2<N>,
	/// Maximum position in screen space as screen's width and height.
	max: Point2<N>,
	/// Cached unit per pixel on focus plane to scale/project positions/vectors onto focus plane.
	upp: N,
	/// Cached previous frame.
	frame: Frame<N>,
	/// Cached previous scope.
	scope: Scope<N>,
	/// Cached view isometry from world to camera space coinciding with right-handed look-at space.
	view_iso: Isometry3<N>,
	/// Cached homogeneous view matrix computed from view isometry.
	view_mat: Matrix4<N>,
	/// Cached scale-identical orthographic or perspective projection matrix.
	proj_mat: Matrix4<N>,
	/// Cached transformation.
	proj_view_mat: Matrix4<N>,
	/// Cached inverse of transformation.
	proj_view_inv: Matrix4<N>,
	/// Whether to compute transformation. Default is `true`.
	compute_mat: bool,
	/// Whether to compute inverse transformation. Default is `true`.
	compute_inv: bool,
}

impl<N: Copy + RealField> Image<N> {
	/// Computes initial transformations from frame, scope, and screen's width and height.
	#[must_use]
	pub fn new(frame: &Frame<N>, scope: &Scope<N>, max: Point2<N>) -> Self {
		let mut image = Self {
			pos: Point2::origin(),
			max,
			upp: zero(),
			frame: *frame,
			scope: *scope,
			view_iso: Isometry3::identity(),
			view_mat: zero(),
			proj_mat: zero(),
			proj_view_mat: zero(),
			proj_view_inv: zero(),
			compute_mat: true,
			compute_inv: true,
		};
		image.compute_view(frame);
		image.compute_projection_and_upp(frame.distance(), scope);
		image.compute_transformation();
		image.compute_inverse_transformation();
		image
	}
	/// Recomputes only cached matrices whose parameters have changed, see [`Self::set_compute()`].
	///
	/// Returns `Some(true)` on success, `Some(false)` on failure, and `None` with no changes.
	#[allow(clippy::useless_let_if_seq)]
	pub fn compute(&mut self, frame: Frame<N>, scope: Scope<N>) -> Option<bool> {
		let mut compute = false;
		if self.frame != frame {
			self.compute_view(&frame);
			compute = true;
		}
		if self.frame.distance() != frame.distance() || self.scope != scope {
			self.compute_projection_and_upp(frame.distance(), &scope);
			compute = true;
		}
		self.frame = frame;
		self.scope = scope;
		compute.then(|| {
			if self.compute_mat || self.compute_inv {
				self.compute_transformation();
			}
			if self.compute_inv {
				self.compute_inverse_transformation()
			} else {
				true
			}
		})
	}
	/// Sets whether to compute transformation and inverse transformation with [`Self::compute()`].
	///
	/// Default is `(true, true)`.
	pub fn set_compute(&mut self, compute_mat: bool, compute_inv: bool) {
		self.compute_mat = compute_mat;
		self.compute_inv = compute_inv;
	}
	/// Current position in screen space of hovering input or pointing device.
	#[must_use]
	pub const fn pos(&self) -> &Point2<N> {
		&self.pos
	}
	/// Sets current position in screen space of hovering input or pointing device.
	pub fn set_pos(&mut self, pos: Point2<N>) {
		self.pos = pos;
	}
	/// Maximum position in screen space as screen's width and height.
	#[must_use]
	pub const fn max(&self) -> &Point2<N> {
		&self.max
	}
	/// Sets maximum position in screen space as screen's width and height.
	pub fn set_max(&mut self, max: Point2<N>) {
		// Let `Self::compute()` recompute projection matrix by invalidating cached previous scope.
		if self.max != max {
			self.scope.set_fov(N::zero());
		}
		self.max = max;
	}
	/// Cached unit per pixel on focus plane to scale/project positions/vectors onto focus plane.
	#[must_use]
	pub const fn upp(&self) -> N {
		self.upp
	}
	/// Cached view isometry.
	#[must_use]
	pub const fn view_isometry(&self) -> &Isometry3<N> {
		&self.view_iso
	}
	/// Cached view matrix.
	#[must_use]
	pub const fn view(&self) -> &Matrix4<N> {
		&self.view_mat
	}
	/// Computes view isometry and matrix from frame wrt camera eye and target.
	pub fn compute_view(&mut self, frame: &Frame<N>) {
		self.view_iso = frame.view();
		self.view_mat = self.view_iso.to_homogeneous();
	}
	/// Cached projection matrix.
	#[must_use]
	pub const fn projection(&self) -> &Matrix4<N> {
		&self.proj_mat
	}
	/// Computes projection matrix and unit per pixel on focus plane.
	pub fn compute_projection_and_upp(&mut self, zat: N, scope: &Scope<N>) {
		let (mat, upp) = scope.projection_and_upp(zat, &self.max);
		self.upp = upp;
		self.proj_mat = mat;
	}
	/// Cached projection view matrix.
	#[must_use]
	pub const fn transformation(&self) -> &Matrix4<N> {
		&self.proj_view_mat
	}
	/// Computes projection view matrix.
	pub fn compute_transformation(&mut self) {
		self.proj_view_mat = self.proj_mat * self.view_mat;
	}
	/// Cached inverse projection view matrix.
	#[must_use]
	pub const fn inverse_transformation(&self) -> &Matrix4<N> {
		&self.proj_view_inv
	}
	/// Computes inverse of projection view matrix.
	///
	/// Returns `true` on success.
	pub fn compute_inverse_transformation(&mut self) -> bool {
		let inv = self.proj_view_mat.try_inverse();
		if let Some(mat) = inv {
			self.proj_view_inv = mat;
		}
		inv.is_some()
	}
	/// Clamps position in screen space wrt its maximum in screen space.
	#[must_use]
	pub fn clamp_pos_wrt_max(pos: &Point2<N>, max: &Point2<N>) -> Point2<N> {
		Point2::new(pos.x.clamp(N::zero(), max.x), pos.y.clamp(N::zero(), max.y))
	}
	/// Clamps position in screen space.
	#[must_use]
	pub fn clamp_pos(&self, pos: &Point2<N>) -> Point2<N> {
		Self::clamp_pos_wrt_max(pos, &self.max)
	}
	/// Transforms position and its maximum from screen to camera space wrt its maximum.
	#[must_use]
	pub fn transform_pos_and_max_wrt_max(
		pos: &Point2<N>,
		max: &Point2<N>,
	) -> (Point2<N>, Point2<N>) {
		let max = max * convert(0.5);
		(Point2::new(pos.x - max.x, max.y - pos.y), max)
	}
	/// Transforms position from screen to camera space.
	#[must_use]
	pub fn transform_pos(&self, pos: &Point2<N>) -> Point2<N> {
		Self::transform_pos_and_max_wrt_max(pos, &self.max).0
	}
	/// Transforms vector from screen to camera space.
	#[must_use]
	pub fn transform_vec(pos: &Vector2<N>) -> Vector2<N> {
		Vector2::new(pos.x, -pos.y)
	}
	/// Transforms position from screen to camera space and projects it onto focus plane.
	#[must_use]
	pub fn project_pos(&self, pos: &Point2<N>) -> Point3<N> {
		self.transform_pos(pos)
			.coords
			.scale(self.upp)
			.push(N::zero())
			.into()
	}
	/// Transforms vector from screen to camera space and projects it onto focus plane.
	#[must_use]
	pub fn project_vec(&self, vec: &Vector2<N>) -> Vector3<N> {
		Self::transform_vec(vec).scale(self.upp).push(N::zero())
	}
	/// Casts components to another type, e.g., between [`f32`] and [`f64`].
	#[must_use]
	pub fn cast<M: Copy + RealField>(self) -> Image<M>
	where
		N: SubsetOf<M>,
	{
		Image {
			pos: self.pos.cast(),
			max: self.max.cast(),
			upp: self.upp.to_superset(),
			frame: self.frame.cast(),
			scope: self.scope.cast(),
			view_iso: self.view_iso.cast(),
			view_mat: self.view_mat.cast(),
			proj_mat: self.proj_mat.cast(),
			proj_view_mat: self.proj_view_mat.cast(),
			proj_view_inv: self.proj_view_inv.cast(),
			compute_mat: self.compute_mat,
			compute_inv: self.compute_inv,
		}
	}
}

#[cfg(feature = "rkyv")]
impl<N: Copy + RealField> rkyv::Archive for Image<N> {
	type Archived = Self;
	type Resolver = ();

	#[inline]
	#[allow(unsafe_code)]
	unsafe fn resolve(&self, _: usize, (): Self::Resolver, out: *mut Self::Archived) {
		out.write(rkyv::to_archived!(*self as Self));
	}
}

#[cfg(feature = "rkyv")]
impl<Ser: rkyv::Fallible + ?Sized, N: Copy + RealField> rkyv::Serialize<Ser> for Image<N> {
	#[inline]
	fn serialize(&self, _: &mut Ser) -> Result<Self::Resolver, Ser::Error> {
		Ok(())
	}
}

#[cfg(feature = "rkyv")]
impl<De: rkyv::Fallible + ?Sized, N: Copy + RealField> rkyv::Deserialize<Self, De> for Image<N> {
	#[inline]
	fn deserialize(&self, _: &mut De) -> Result<Self, De::Error> {
		Ok(rkyv::from_archived!(*self))
	}
}