uuid/lib.rs
1// Copyright 2013-2014 The Rust Project Developers.
2// Copyright 2018 The Uuid Project Developers.
3//
4// See the COPYRIGHT file at the top-level directory of this distribution.
5//
6// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
7// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
8// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
9// option. This file may not be copied, modified, or distributed
10// except according to those terms.
11
12//! Generate and parse universally unique identifiers (UUIDs).
13//!
14//! Here's an example of a UUID:
15//!
16//! ```text
17//! 67e55044-10b1-426f-9247-bb680e5fe0c8
18//! ```
19//!
20//! A UUID is a unique 128-bit value, stored as 16 octets, and regularly
21//! formatted as a hex string in five groups. UUIDs are used to assign unique
22//! identifiers to entities without requiring a central allocating authority.
23//!
24//! They are particularly useful in distributed systems, though can be used in
25//! disparate areas, such as databases and network protocols. Typically a UUID
26//! is displayed in a readable string form as a sequence of hexadecimal digits,
27//! separated into groups by hyphens.
28//!
29//! The uniqueness property is not strictly guaranteed, however for all
30//! practical purposes, it can be assumed that an unintentional collision would
31//! be extremely unlikely.
32//!
33//! UUIDs have a number of standardized encodings that are specified in [RFC 9562](https://www.ietf.org/rfc/rfc9562.html).
34//!
35//! # Getting started
36//!
37//! Add the following to your `Cargo.toml`:
38//!
39//! ```toml
40//! [dependencies.uuid]
41//! version = "1.12.1"
42//! features = [
43//! "v4", # Lets you generate random UUIDs
44//! "fast-rng", # Use a faster (but still sufficiently random) RNG
45//! "macro-diagnostics", # Enable better diagnostics for compile-time UUIDs
46//! ]
47//! ```
48//!
49//! When you want a UUID, you can generate one:
50//!
51//! ```
52//! # fn main() {
53//! # #[cfg(feature = "v4")]
54//! # {
55//! use uuid::Uuid;
56//!
57//! let id = Uuid::new_v4();
58//! # }
59//! # }
60//! ```
61//!
62//! If you have a UUID value, you can use its string literal form inline:
63//!
64//! ```
65//! use uuid::{uuid, Uuid};
66//!
67//! const ID: Uuid = uuid!("67e55044-10b1-426f-9247-bb680e5fe0c8");
68//! ```
69//!
70//! # Working with different UUID versions
71//!
72//! This library supports all standardized methods for generating UUIDs through individual Cargo features.
73//!
74//! By default, this crate depends on nothing but the Rust standard library and can parse and format
75//! UUIDs, but cannot generate them. Depending on the kind of UUID you'd like to work with, there
76//! are Cargo features that enable generating them:
77//!
78//! * `v1` - Version 1 UUIDs using a timestamp and monotonic counter.
79//! * `v3` - Version 3 UUIDs based on the MD5 hash of some data.
80//! * `v4` - Version 4 UUIDs with random data.
81//! * `v5` - Version 5 UUIDs based on the SHA1 hash of some data.
82//! * `v6` - Version 6 UUIDs using a timestamp and monotonic counter.
83//! * `v7` - Version 7 UUIDs using a Unix timestamp.
84//! * `v8` - Version 8 UUIDs using user-defined data.
85//!
86//! This library also includes a [`Builder`] type that can be used to help construct UUIDs of any
87//! version without any additional dependencies or features. It's a lower-level API than [`Uuid`]
88//! that can be used when you need control over implicit requirements on things like a source
89//! of randomness.
90//!
91//! ## Which UUID version should I use?
92//!
93//! If you just want to generate unique identifiers then consider version 4 (`v4`) UUIDs. If you want
94//! to use UUIDs as database keys or need to sort them then consider version 7 (`v7`) UUIDs.
95//! Other versions should generally be avoided unless there's an existing need for them.
96//!
97//! Some UUID versions supersede others. Prefer version 6 over version 1 and version 5 over version 3.
98//!
99//! # Other features
100//!
101//! Other crate features can also be useful beyond the version support:
102//!
103//! * `macro-diagnostics` - enhances the diagnostics of `uuid!` macro.
104//! * `serde` - adds the ability to serialize and deserialize a UUID using
105//! `serde`.
106//! * `borsh` - adds the ability to serialize and deserialize a UUID using
107//! `borsh`.
108//! * `arbitrary` - adds an `Arbitrary` trait implementation to `Uuid` for
109//! fuzzing.
110//! * `fast-rng` - uses a faster algorithm for generating random UUIDs.
111//! This feature requires more dependencies to compile, but is just as suitable for
112//! UUIDs as the default algorithm.
113//! * `bytemuck` - adds a `Pod` trait implementation to `Uuid` for byte manipulation
114//!
115//! # Unstable features
116//!
117//! Some features are unstable. They may be incomplete or depend on other
118//! unstable libraries. These include:
119//!
120//! * `zerocopy` - adds support for zero-copy deserialization using the
121//! `zerocopy` library.
122//!
123//! Unstable features may break between minor releases.
124//!
125//! To allow unstable features, you'll need to enable the Cargo feature as
126//! normal, but also pass an additional flag through your environment to opt-in
127//! to unstable `uuid` features:
128//!
129//! ```text
130//! RUSTFLAGS="--cfg uuid_unstable"
131//! ```
132//!
133//! # Building for other targets
134//!
135//! ## WebAssembly
136//!
137//! For WebAssembly, enable the `js` feature:
138//!
139//! ```toml
140//! [dependencies.uuid]
141//! version = "1.12.1"
142//! features = [
143//! "v4",
144//! "v7",
145//! "js",
146//! ]
147//! ```
148//!
149//! ## Embedded
150//!
151//! For embedded targets without the standard library, you'll need to
152//! disable default features when building `uuid`:
153//!
154//! ```toml
155//! [dependencies.uuid]
156//! version = "1.12.1"
157//! default-features = false
158//! ```
159//!
160//! Some additional features are supported in no-std environments:
161//!
162//! * `v1`, `v3`, `v5`, `v6`, and `v8`.
163//! * `serde`.
164//!
165//! If you need to use `v4` or `v7` in a no-std environment, you'll need to
166//! follow [`getrandom`'s docs] on configuring a source of randomness
167//! on currently unsupported targets. Alternatively, you can produce
168//! random bytes yourself and then pass them to [`Builder::from_random_bytes`]
169//! without enabling the `v4` or `v7` features.
170//!
171//! # Examples
172//!
173//! Parse a UUID given in the simple format and print it as a URN:
174//!
175//! ```
176//! # use uuid::Uuid;
177//! # fn main() -> Result<(), uuid::Error> {
178//! let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
179//!
180//! println!("{}", my_uuid.urn());
181//! # Ok(())
182//! # }
183//! ```
184//!
185//! Generate a random UUID and print it out in hexadecimal form:
186//!
187//! ```
188//! // Note that this requires the `v4` feature to be enabled.
189//! # use uuid::Uuid;
190//! # fn main() {
191//! # #[cfg(feature = "v4")] {
192//! let my_uuid = Uuid::new_v4();
193//!
194//! println!("{}", my_uuid);
195//! # }
196//! # }
197//! ```
198//!
199//! # References
200//!
201//! * [Wikipedia: Universally Unique Identifier](http://en.wikipedia.org/wiki/Universally_unique_identifier)
202//! * [RFC 9562: Universally Unique IDentifiers (UUID)](https://www.ietf.org/rfc/rfc9562.html).
203//!
204//! [`wasm-bindgen`]: https://crates.io/crates/wasm-bindgen
205//! [`cargo-web`]: https://crates.io/crates/cargo-web
206//! [`getrandom`'s docs]: https://docs.rs/getrandom
207
208#![no_std]
209#![deny(missing_debug_implementations, missing_docs)]
210#![allow(clippy::mixed_attributes_style)]
211#![doc(
212 html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
213 html_favicon_url = "https://www.rust-lang.org/favicon.ico",
214 html_root_url = "https://docs.rs/uuid/1.12.1"
215)]
216
217#[cfg(any(feature = "std", test))]
218#[macro_use]
219extern crate std;
220
221#[cfg(all(not(feature = "std"), not(test)))]
222#[macro_use]
223extern crate core as std;
224
225mod builder;
226mod error;
227mod non_nil;
228mod parser;
229
230pub mod fmt;
231pub mod timestamp;
232
233pub use timestamp::{context::NoContext, ClockSequence, Timestamp};
234
235#[cfg(any(feature = "v1", feature = "v6"))]
236pub use timestamp::context::Context;
237
238#[cfg(feature = "v7")]
239pub use timestamp::context::ContextV7;
240
241#[cfg(feature = "v1")]
242#[doc(hidden)]
243// Soft-deprecated (Rust doesn't support deprecating re-exports)
244// Use `Context` from the crate root instead
245pub mod v1;
246#[cfg(feature = "v3")]
247mod v3;
248#[cfg(feature = "v4")]
249mod v4;
250#[cfg(feature = "v5")]
251mod v5;
252#[cfg(feature = "v6")]
253mod v6;
254#[cfg(feature = "v7")]
255mod v7;
256#[cfg(feature = "v8")]
257mod v8;
258
259#[cfg(feature = "md5")]
260mod md5;
261#[cfg(feature = "rng")]
262mod rng;
263#[cfg(feature = "sha1")]
264mod sha1;
265
266mod external;
267
268#[macro_use]
269mod macros;
270
271#[doc(hidden)]
272#[cfg(feature = "macro-diagnostics")]
273pub extern crate uuid_macro_internal;
274
275#[doc(hidden)]
276pub mod __macro_support {
277 pub use crate::std::result::Result::{Err, Ok};
278}
279
280use crate::std::convert;
281
282pub use crate::{builder::Builder, error::Error, non_nil::NonNilUuid};
283
284/// A 128-bit (16 byte) buffer containing the UUID.
285///
286/// # ABI
287///
288/// The `Bytes` type is always guaranteed to be have the same ABI as [`Uuid`].
289pub type Bytes = [u8; 16];
290
291/// The version of the UUID, denoting the generating algorithm.
292///
293/// # References
294///
295/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
296#[derive(Clone, Copy, Debug, PartialEq)]
297#[non_exhaustive]
298#[repr(u8)]
299pub enum Version {
300 /// The "nil" (all zeros) UUID.
301 Nil = 0u8,
302 /// Version 1: Timestamp and node ID.
303 Mac = 1,
304 /// Version 2: DCE Security.
305 Dce = 2,
306 /// Version 3: MD5 hash.
307 Md5 = 3,
308 /// Version 4: Random.
309 Random = 4,
310 /// Version 5: SHA-1 hash.
311 Sha1 = 5,
312 /// Version 6: Sortable Timestamp and node ID.
313 SortMac = 6,
314 /// Version 7: Timestamp and random.
315 SortRand = 7,
316 /// Version 8: Custom.
317 Custom = 8,
318 /// The "max" (all ones) UUID.
319 Max = 0xff,
320}
321
322/// The reserved variants of UUIDs.
323///
324/// # References
325///
326/// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
327#[derive(Clone, Copy, Debug, PartialEq)]
328#[non_exhaustive]
329#[repr(u8)]
330pub enum Variant {
331 /// Reserved by the NCS for backward compatibility.
332 NCS = 0u8,
333 /// As described in the RFC 9562 Specification (default).
334 /// (for backward compatibility it is not yet renamed)
335 RFC4122,
336 /// Reserved by Microsoft for backward compatibility.
337 Microsoft,
338 /// Reserved for future expansion.
339 Future,
340}
341
342/// A Universally Unique Identifier (UUID).
343///
344/// # Examples
345///
346/// Parse a UUID given in the simple format and print it as a urn:
347///
348/// ```
349/// # use uuid::Uuid;
350/// # fn main() -> Result<(), uuid::Error> {
351/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
352///
353/// println!("{}", my_uuid.urn());
354/// # Ok(())
355/// # }
356/// ```
357///
358/// Create a new random (V4) UUID and print it out in hexadecimal form:
359///
360/// ```
361/// // Note that this requires the `v4` feature enabled in the uuid crate.
362/// # use uuid::Uuid;
363/// # fn main() {
364/// # #[cfg(feature = "v4")] {
365/// let my_uuid = Uuid::new_v4();
366///
367/// println!("{}", my_uuid);
368/// # }
369/// # }
370/// ```
371///
372/// # Formatting
373///
374/// A UUID can be formatted in one of a few ways:
375///
376/// * [`simple`](#method.simple): `a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8`.
377/// * [`hyphenated`](#method.hyphenated):
378/// `a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8`.
379/// * [`urn`](#method.urn): `urn:uuid:A1A2A3A4-B1B2-C1C2-D1D2-D3D4D5D6D7D8`.
380/// * [`braced`](#method.braced): `{a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8}`.
381///
382/// The default representation when formatting a UUID with `Display` is
383/// hyphenated:
384///
385/// ```
386/// # use uuid::Uuid;
387/// # fn main() -> Result<(), uuid::Error> {
388/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
389///
390/// assert_eq!(
391/// "a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
392/// my_uuid.to_string(),
393/// );
394/// # Ok(())
395/// # }
396/// ```
397///
398/// Other formats can be specified using adapter methods on the UUID:
399///
400/// ```
401/// # use uuid::Uuid;
402/// # fn main() -> Result<(), uuid::Error> {
403/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
404///
405/// assert_eq!(
406/// "urn:uuid:a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
407/// my_uuid.urn().to_string(),
408/// );
409/// # Ok(())
410/// # }
411/// ```
412///
413/// # Endianness
414///
415/// The specification for UUIDs encodes the integer fields that make up the
416/// value in big-endian order. This crate assumes integer inputs are already in
417/// the correct order by default, regardless of the endianness of the
418/// environment. Most methods that accept integers have a `_le` variant (such as
419/// `from_fields_le`) that assumes any integer values will need to have their
420/// bytes flipped, regardless of the endianness of the environment.
421///
422/// Most users won't need to worry about endianness unless they need to operate
423/// on individual fields (such as when converting between Microsoft GUIDs). The
424/// important things to remember are:
425///
426/// - The endianness is in terms of the fields of the UUID, not the environment.
427/// - The endianness is assumed to be big-endian when there's no `_le` suffix
428/// somewhere.
429/// - Byte-flipping in `_le` methods applies to each integer.
430/// - Endianness roundtrips, so if you create a UUID with `from_fields_le`
431/// you'll get the same values back out with `to_fields_le`.
432///
433/// # ABI
434///
435/// The `Uuid` type is always guaranteed to be have the same ABI as [`Bytes`].
436#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
437#[repr(transparent)]
438// NOTE: Also check `NonNilUuid` when ading new derives here
439#[cfg_attr(
440 all(uuid_unstable, feature = "zerocopy"),
441 derive(zerocopy::IntoBytes, zerocopy::FromBytes, zerocopy::KnownLayout, zerocopy::Immutable, zerocopy::Unaligned)
442)]
443#[cfg_attr(
444 feature = "borsh",
445 derive(borsh_derive::BorshDeserialize, borsh_derive::BorshSerialize)
446)]
447#[cfg_attr(
448 feature = "bytemuck",
449 derive(bytemuck::Zeroable, bytemuck::Pod, bytemuck::TransparentWrapper)
450)]
451pub struct Uuid(Bytes);
452
453impl Uuid {
454 /// UUID namespace for Domain Name System (DNS).
455 pub const NAMESPACE_DNS: Self = Uuid([
456 0x6b, 0xa7, 0xb8, 0x10, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
457 0xc8,
458 ]);
459
460 /// UUID namespace for ISO Object Identifiers (OIDs).
461 pub const NAMESPACE_OID: Self = Uuid([
462 0x6b, 0xa7, 0xb8, 0x12, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
463 0xc8,
464 ]);
465
466 /// UUID namespace for Uniform Resource Locators (URLs).
467 pub const NAMESPACE_URL: Self = Uuid([
468 0x6b, 0xa7, 0xb8, 0x11, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
469 0xc8,
470 ]);
471
472 /// UUID namespace for X.500 Distinguished Names (DNs).
473 pub const NAMESPACE_X500: Self = Uuid([
474 0x6b, 0xa7, 0xb8, 0x14, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
475 0xc8,
476 ]);
477
478 /// Returns the variant of the UUID structure.
479 ///
480 /// This determines the interpretation of the structure of the UUID.
481 /// This method simply reads the value of the variant byte. It doesn't
482 /// validate the rest of the UUID as conforming to that variant.
483 ///
484 /// # Examples
485 ///
486 /// Basic usage:
487 ///
488 /// ```
489 /// # use uuid::{Uuid, Variant};
490 /// # fn main() -> Result<(), uuid::Error> {
491 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
492 ///
493 /// assert_eq!(Variant::RFC4122, my_uuid.get_variant());
494 /// # Ok(())
495 /// # }
496 /// ```
497 ///
498 /// # References
499 ///
500 /// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
501 pub const fn get_variant(&self) -> Variant {
502 match self.as_bytes()[8] {
503 x if x & 0x80 == 0x00 => Variant::NCS,
504 x if x & 0xc0 == 0x80 => Variant::RFC4122,
505 x if x & 0xe0 == 0xc0 => Variant::Microsoft,
506 x if x & 0xe0 == 0xe0 => Variant::Future,
507 // The above match arms are actually exhaustive
508 // We just return `Future` here because we can't
509 // use `unreachable!()` in a `const fn`
510 _ => Variant::Future,
511 }
512 }
513
514 /// Returns the version number of the UUID.
515 ///
516 /// This represents the algorithm used to generate the value.
517 /// This method is the future-proof alternative to [`Uuid::get_version`].
518 ///
519 /// # Examples
520 ///
521 /// Basic usage:
522 ///
523 /// ```
524 /// # use uuid::Uuid;
525 /// # fn main() -> Result<(), uuid::Error> {
526 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
527 ///
528 /// assert_eq!(3, my_uuid.get_version_num());
529 /// # Ok(())
530 /// # }
531 /// ```
532 ///
533 /// # References
534 ///
535 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
536 pub const fn get_version_num(&self) -> usize {
537 (self.as_bytes()[6] >> 4) as usize
538 }
539
540 /// Returns the version of the UUID.
541 ///
542 /// This represents the algorithm used to generate the value.
543 /// If the version field doesn't contain a recognized version then `None`
544 /// is returned. If you're trying to read the version for a future extension
545 /// you can also use [`Uuid::get_version_num`] to unconditionally return a
546 /// number. Future extensions may start to return `Some` once they're
547 /// standardized and supported.
548 ///
549 /// # Examples
550 ///
551 /// Basic usage:
552 ///
553 /// ```
554 /// # use uuid::{Uuid, Version};
555 /// # fn main() -> Result<(), uuid::Error> {
556 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
557 ///
558 /// assert_eq!(Some(Version::Md5), my_uuid.get_version());
559 /// # Ok(())
560 /// # }
561 /// ```
562 ///
563 /// # References
564 ///
565 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
566 pub const fn get_version(&self) -> Option<Version> {
567 match self.get_version_num() {
568 0 if self.is_nil() => Some(Version::Nil),
569 1 => Some(Version::Mac),
570 2 => Some(Version::Dce),
571 3 => Some(Version::Md5),
572 4 => Some(Version::Random),
573 5 => Some(Version::Sha1),
574 6 => Some(Version::SortMac),
575 7 => Some(Version::SortRand),
576 8 => Some(Version::Custom),
577 0xf => Some(Version::Max),
578 _ => None,
579 }
580 }
581
582 /// Returns the four field values of the UUID.
583 ///
584 /// These values can be passed to the [`Uuid::from_fields`] method to get
585 /// the original `Uuid` back.
586 ///
587 /// * The first field value represents the first group of (eight) hex
588 /// digits, taken as a big-endian `u32` value. For V1 UUIDs, this field
589 /// represents the low 32 bits of the timestamp.
590 /// * The second field value represents the second group of (four) hex
591 /// digits, taken as a big-endian `u16` value. For V1 UUIDs, this field
592 /// represents the middle 16 bits of the timestamp.
593 /// * The third field value represents the third group of (four) hex digits,
594 /// taken as a big-endian `u16` value. The 4 most significant bits give
595 /// the UUID version, and for V1 UUIDs, the last 12 bits represent the
596 /// high 12 bits of the timestamp.
597 /// * The last field value represents the last two groups of four and twelve
598 /// hex digits, taken in order. The first 1-3 bits of this indicate the
599 /// UUID variant, and for V1 UUIDs, the next 13-15 bits indicate the clock
600 /// sequence and the last 48 bits indicate the node ID.
601 ///
602 /// # Examples
603 ///
604 /// ```
605 /// # use uuid::Uuid;
606 /// # fn main() -> Result<(), uuid::Error> {
607 /// let uuid = Uuid::nil();
608 ///
609 /// assert_eq!(uuid.as_fields(), (0, 0, 0, &[0u8; 8]));
610 ///
611 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
612 ///
613 /// assert_eq!(
614 /// uuid.as_fields(),
615 /// (
616 /// 0xa1a2a3a4,
617 /// 0xb1b2,
618 /// 0xc1c2,
619 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
620 /// )
621 /// );
622 /// # Ok(())
623 /// # }
624 /// ```
625 pub fn as_fields(&self) -> (u32, u16, u16, &[u8; 8]) {
626 let bytes = self.as_bytes();
627
628 let d1 = (bytes[0] as u32) << 24
629 | (bytes[1] as u32) << 16
630 | (bytes[2] as u32) << 8
631 | (bytes[3] as u32);
632
633 let d2 = (bytes[4] as u16) << 8 | (bytes[5] as u16);
634
635 let d3 = (bytes[6] as u16) << 8 | (bytes[7] as u16);
636
637 let d4: &[u8; 8] = convert::TryInto::try_into(&bytes[8..16]).unwrap();
638 (d1, d2, d3, d4)
639 }
640
641 /// Returns the four field values of the UUID in little-endian order.
642 ///
643 /// The bytes in the returned integer fields will be converted from
644 /// big-endian order. This is based on the endianness of the UUID,
645 /// rather than the target environment so bytes will be flipped on both
646 /// big and little endian machines.
647 ///
648 /// # Examples
649 ///
650 /// ```
651 /// use uuid::Uuid;
652 ///
653 /// # fn main() -> Result<(), uuid::Error> {
654 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
655 ///
656 /// assert_eq!(
657 /// uuid.to_fields_le(),
658 /// (
659 /// 0xa4a3a2a1,
660 /// 0xb2b1,
661 /// 0xc2c1,
662 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
663 /// )
664 /// );
665 /// # Ok(())
666 /// # }
667 /// ```
668 pub fn to_fields_le(&self) -> (u32, u16, u16, &[u8; 8]) {
669 let d1 = (self.as_bytes()[0] as u32)
670 | (self.as_bytes()[1] as u32) << 8
671 | (self.as_bytes()[2] as u32) << 16
672 | (self.as_bytes()[3] as u32) << 24;
673
674 let d2 = (self.as_bytes()[4] as u16) | (self.as_bytes()[5] as u16) << 8;
675
676 let d3 = (self.as_bytes()[6] as u16) | (self.as_bytes()[7] as u16) << 8;
677
678 let d4: &[u8; 8] = convert::TryInto::try_into(&self.as_bytes()[8..16]).unwrap();
679 (d1, d2, d3, d4)
680 }
681
682 /// Returns a 128bit value containing the value.
683 ///
684 /// The bytes in the UUID will be packed directly into a `u128`.
685 ///
686 /// # Examples
687 ///
688 /// ```
689 /// # use uuid::Uuid;
690 /// # fn main() -> Result<(), uuid::Error> {
691 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
692 ///
693 /// assert_eq!(
694 /// uuid.as_u128(),
695 /// 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8,
696 /// );
697 /// # Ok(())
698 /// # }
699 /// ```
700 pub const fn as_u128(&self) -> u128 {
701 u128::from_be_bytes(*self.as_bytes())
702 }
703
704 /// Returns a 128bit little-endian value containing the value.
705 ///
706 /// The bytes in the `u128` will be flipped to convert into big-endian
707 /// order. This is based on the endianness of the UUID, rather than the
708 /// target environment so bytes will be flipped on both big and little
709 /// endian machines.
710 ///
711 /// Note that this will produce a different result than
712 /// [`Uuid::to_fields_le`], because the entire UUID is reversed, rather
713 /// than reversing the individual fields in-place.
714 ///
715 /// # Examples
716 ///
717 /// ```
718 /// # use uuid::Uuid;
719 /// # fn main() -> Result<(), uuid::Error> {
720 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
721 ///
722 /// assert_eq!(
723 /// uuid.to_u128_le(),
724 /// 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1,
725 /// );
726 /// # Ok(())
727 /// # }
728 /// ```
729 pub const fn to_u128_le(&self) -> u128 {
730 u128::from_le_bytes(*self.as_bytes())
731 }
732
733 /// Returns two 64bit values containing the value.
734 ///
735 /// The bytes in the UUID will be split into two `u64`.
736 /// The first u64 represents the 64 most significant bits,
737 /// the second one represents the 64 least significant.
738 ///
739 /// # Examples
740 ///
741 /// ```
742 /// # use uuid::Uuid;
743 /// # fn main() -> Result<(), uuid::Error> {
744 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
745 /// assert_eq!(
746 /// uuid.as_u64_pair(),
747 /// (0xa1a2a3a4b1b2c1c2, 0xd1d2d3d4d5d6d7d8),
748 /// );
749 /// # Ok(())
750 /// # }
751 /// ```
752 pub const fn as_u64_pair(&self) -> (u64, u64) {
753 let value = self.as_u128();
754 ((value >> 64) as u64, value as u64)
755 }
756
757 /// Returns a slice of 16 octets containing the value.
758 ///
759 /// This method borrows the underlying byte value of the UUID.
760 ///
761 /// # Examples
762 ///
763 /// ```
764 /// # use uuid::Uuid;
765 /// let bytes1 = [
766 /// 0xa1, 0xa2, 0xa3, 0xa4,
767 /// 0xb1, 0xb2,
768 /// 0xc1, 0xc2,
769 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
770 /// ];
771 /// let uuid1 = Uuid::from_bytes_ref(&bytes1);
772 ///
773 /// let bytes2 = uuid1.as_bytes();
774 /// let uuid2 = Uuid::from_bytes_ref(bytes2);
775 ///
776 /// assert_eq!(uuid1, uuid2);
777 ///
778 /// assert!(std::ptr::eq(
779 /// uuid2 as *const Uuid as *const u8,
780 /// &bytes1 as *const [u8; 16] as *const u8,
781 /// ));
782 /// ```
783 #[inline]
784 pub const fn as_bytes(&self) -> &Bytes {
785 &self.0
786 }
787
788 /// Consumes self and returns the underlying byte value of the UUID.
789 ///
790 /// # Examples
791 ///
792 /// ```
793 /// # use uuid::Uuid;
794 /// let bytes = [
795 /// 0xa1, 0xa2, 0xa3, 0xa4,
796 /// 0xb1, 0xb2,
797 /// 0xc1, 0xc2,
798 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
799 /// ];
800 /// let uuid = Uuid::from_bytes(bytes);
801 /// assert_eq!(bytes, uuid.into_bytes());
802 /// ```
803 #[inline]
804 pub const fn into_bytes(self) -> Bytes {
805 self.0
806 }
807
808 /// Returns the bytes of the UUID in little-endian order.
809 ///
810 /// The bytes will be flipped to convert into little-endian order. This is
811 /// based on the endianness of the UUID, rather than the target environment
812 /// so bytes will be flipped on both big and little endian machines.
813 ///
814 /// # Examples
815 ///
816 /// ```
817 /// use uuid::Uuid;
818 ///
819 /// # fn main() -> Result<(), uuid::Error> {
820 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
821 ///
822 /// assert_eq!(
823 /// uuid.to_bytes_le(),
824 /// ([
825 /// 0xa4, 0xa3, 0xa2, 0xa1, 0xb2, 0xb1, 0xc2, 0xc1, 0xd1, 0xd2,
826 /// 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8
827 /// ])
828 /// );
829 /// # Ok(())
830 /// # }
831 /// ```
832 pub const fn to_bytes_le(&self) -> Bytes {
833 [
834 self.0[3], self.0[2], self.0[1], self.0[0], self.0[5], self.0[4], self.0[7], self.0[6],
835 self.0[8], self.0[9], self.0[10], self.0[11], self.0[12], self.0[13], self.0[14],
836 self.0[15],
837 ]
838 }
839
840 /// Tests if the UUID is nil (all zeros).
841 pub const fn is_nil(&self) -> bool {
842 self.as_u128() == u128::MIN
843 }
844
845 /// Tests if the UUID is max (all ones).
846 pub const fn is_max(&self) -> bool {
847 self.as_u128() == u128::MAX
848 }
849
850 /// A buffer that can be used for `encode_...` calls, that is
851 /// guaranteed to be long enough for any of the format adapters.
852 ///
853 /// # Examples
854 ///
855 /// ```
856 /// # use uuid::Uuid;
857 /// let uuid = Uuid::nil();
858 ///
859 /// assert_eq!(
860 /// uuid.simple().encode_lower(&mut Uuid::encode_buffer()),
861 /// "00000000000000000000000000000000"
862 /// );
863 ///
864 /// assert_eq!(
865 /// uuid.hyphenated()
866 /// .encode_lower(&mut Uuid::encode_buffer()),
867 /// "00000000-0000-0000-0000-000000000000"
868 /// );
869 ///
870 /// assert_eq!(
871 /// uuid.urn().encode_lower(&mut Uuid::encode_buffer()),
872 /// "urn:uuid:00000000-0000-0000-0000-000000000000"
873 /// );
874 /// ```
875 pub const fn encode_buffer() -> [u8; fmt::Urn::LENGTH] {
876 [0; fmt::Urn::LENGTH]
877 }
878
879 /// If the UUID is the correct version (v1, v6, or v7) this will return
880 /// the timestamp in a version-agnostic [`Timestamp`]. For other versions
881 /// this will return `None`.
882 ///
883 /// # Roundtripping
884 ///
885 /// This method is unlikely to roundtrip a timestamp in a UUID due to the way
886 /// UUIDs encode timestamps. The timestamp returned from this method will be truncated to
887 /// 100ns precision for version 1 and 6 UUIDs, and to millisecond precision for version 7 UUIDs.
888 pub const fn get_timestamp(&self) -> Option<Timestamp> {
889 match self.get_version() {
890 Some(Version::Mac) => {
891 let (ticks, counter) = timestamp::decode_gregorian_timestamp(self);
892
893 Some(Timestamp::from_gregorian(ticks, counter))
894 }
895 Some(Version::SortMac) => {
896 let (ticks, counter) = timestamp::decode_sorted_gregorian_timestamp(self);
897
898 Some(Timestamp::from_gregorian(ticks, counter))
899 }
900 Some(Version::SortRand) => {
901 let millis = timestamp::decode_unix_timestamp_millis(self);
902
903 let seconds = millis / 1000;
904 let nanos = ((millis % 1000) * 1_000_000) as u32;
905
906 Some(Timestamp::from_unix_time(seconds, nanos, 0, 0))
907 }
908 _ => None,
909 }
910 }
911
912 /// If the UUID is the correct version (v1, or v6) this will return the
913 /// node value as a 6-byte array. For other versions this will return `None`.
914 pub const fn get_node_id(&self) -> Option<[u8; 6]> {
915 match self.get_version() {
916 Some(Version::Mac) | Some(Version::SortMac) => {
917 let mut node_id = [0; 6];
918
919 node_id[0] = self.0[10];
920 node_id[1] = self.0[11];
921 node_id[2] = self.0[12];
922 node_id[3] = self.0[13];
923 node_id[4] = self.0[14];
924 node_id[5] = self.0[15];
925
926 Some(node_id)
927 }
928 _ => None,
929 }
930 }
931}
932
933impl Default for Uuid {
934 #[inline]
935 fn default() -> Self {
936 Uuid::nil()
937 }
938}
939
940impl AsRef<Uuid> for Uuid {
941 #[inline]
942 fn as_ref(&self) -> &Uuid {
943 self
944 }
945}
946
947impl AsRef<[u8]> for Uuid {
948 #[inline]
949 fn as_ref(&self) -> &[u8] {
950 &self.0
951 }
952}
953
954#[cfg(feature = "std")]
955impl From<Uuid> for std::vec::Vec<u8> {
956 fn from(value: Uuid) -> Self {
957 value.0.to_vec()
958 }
959}
960
961#[cfg(feature = "std")]
962impl std::convert::TryFrom<std::vec::Vec<u8>> for Uuid {
963 type Error = Error;
964
965 fn try_from(value: std::vec::Vec<u8>) -> Result<Self, Self::Error> {
966 Uuid::from_slice(&value)
967 }
968}
969
970#[cfg(feature = "serde")]
971pub mod serde {
972 //! Adapters for alternative `serde` formats.
973 //!
974 //! This module contains adapters you can use with [`#[serde(with)]`](https://serde.rs/field-attrs.html#with)
975 //! to change the way a [`Uuid`](../struct.Uuid.html) is serialized
976 //! and deserialized.
977
978 pub use crate::external::serde_support::{braced, compact, simple, urn};
979}
980
981#[cfg(test)]
982mod tests {
983 use super::*;
984
985 use crate::std::string::{String, ToString};
986
987 #[cfg(all(
988 target_arch = "wasm32",
989 target_vendor = "unknown",
990 target_os = "unknown"
991 ))]
992 use wasm_bindgen_test::*;
993
994 macro_rules! check {
995 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
996 $buf.clear();
997 write!($buf, $format, $target).unwrap();
998 assert!($buf.len() == $len);
999 assert!($buf.chars().all($cond), "{}", $buf);
1000 };
1001 }
1002
1003 pub const fn new() -> Uuid {
1004 Uuid::from_bytes([
1005 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAA, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1006 0xA1, 0xE4,
1007 ])
1008 }
1009
1010 pub const fn new2() -> Uuid {
1011 Uuid::from_bytes([
1012 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAB, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1013 0xA1, 0xE4,
1014 ])
1015 }
1016
1017 #[test]
1018 #[cfg_attr(
1019 all(
1020 target_arch = "wasm32",
1021 target_vendor = "unknown",
1022 target_os = "unknown"
1023 ),
1024 wasm_bindgen_test
1025 )]
1026 fn test_uuid_compare() {
1027 let uuid1 = new();
1028 let uuid2 = new2();
1029
1030 assert_eq!(uuid1, uuid1);
1031 assert_eq!(uuid2, uuid2);
1032
1033 assert_ne!(uuid1, uuid2);
1034 assert_ne!(uuid2, uuid1);
1035 }
1036
1037 #[test]
1038 #[cfg_attr(
1039 all(
1040 target_arch = "wasm32",
1041 target_vendor = "unknown",
1042 target_os = "unknown"
1043 ),
1044 wasm_bindgen_test
1045 )]
1046 fn test_uuid_default() {
1047 let default_uuid = Uuid::default();
1048 let nil_uuid = Uuid::nil();
1049
1050 assert_eq!(default_uuid, nil_uuid);
1051 }
1052
1053 #[test]
1054 #[cfg_attr(
1055 all(
1056 target_arch = "wasm32",
1057 target_vendor = "unknown",
1058 target_os = "unknown"
1059 ),
1060 wasm_bindgen_test
1061 )]
1062 fn test_uuid_display() {
1063 use crate::std::fmt::Write;
1064
1065 let uuid = new();
1066 let s = uuid.to_string();
1067 let mut buffer = String::new();
1068
1069 assert_eq!(s, uuid.hyphenated().to_string());
1070
1071 check!(buffer, "{}", uuid, 36, |c| c.is_lowercase()
1072 || c.is_digit(10)
1073 || c == '-');
1074 }
1075
1076 #[test]
1077 #[cfg_attr(
1078 all(
1079 target_arch = "wasm32",
1080 target_vendor = "unknown",
1081 target_os = "unknown"
1082 ),
1083 wasm_bindgen_test
1084 )]
1085 fn test_uuid_lowerhex() {
1086 use crate::std::fmt::Write;
1087
1088 let mut buffer = String::new();
1089 let uuid = new();
1090
1091 check!(buffer, "{:x}", uuid, 36, |c| c.is_lowercase()
1092 || c.is_digit(10)
1093 || c == '-');
1094 }
1095
1096 // noinspection RsAssertEqual
1097 #[test]
1098 #[cfg_attr(
1099 all(
1100 target_arch = "wasm32",
1101 target_vendor = "unknown",
1102 target_os = "unknown"
1103 ),
1104 wasm_bindgen_test
1105 )]
1106 fn test_uuid_operator_eq() {
1107 let uuid1 = new();
1108 let uuid1_dup = uuid1.clone();
1109 let uuid2 = new2();
1110
1111 assert!(uuid1 == uuid1);
1112 assert!(uuid1 == uuid1_dup);
1113 assert!(uuid1_dup == uuid1);
1114
1115 assert!(uuid1 != uuid2);
1116 assert!(uuid2 != uuid1);
1117 assert!(uuid1_dup != uuid2);
1118 assert!(uuid2 != uuid1_dup);
1119 }
1120
1121 #[test]
1122 #[cfg_attr(
1123 all(
1124 target_arch = "wasm32",
1125 target_vendor = "unknown",
1126 target_os = "unknown"
1127 ),
1128 wasm_bindgen_test
1129 )]
1130 fn test_uuid_to_string() {
1131 use crate::std::fmt::Write;
1132
1133 let uuid = new();
1134 let s = uuid.to_string();
1135 let mut buffer = String::new();
1136
1137 assert_eq!(s.len(), 36);
1138
1139 check!(buffer, "{}", s, 36, |c| c.is_lowercase()
1140 || c.is_digit(10)
1141 || c == '-');
1142 }
1143
1144 #[test]
1145 #[cfg_attr(
1146 all(
1147 target_arch = "wasm32",
1148 target_vendor = "unknown",
1149 target_os = "unknown"
1150 ),
1151 wasm_bindgen_test
1152 )]
1153 fn test_non_conforming() {
1154 let from_bytes =
1155 Uuid::from_bytes([4, 54, 67, 12, 43, 2, 2, 76, 32, 50, 87, 5, 1, 33, 43, 87]);
1156
1157 assert_eq!(from_bytes.get_version(), None);
1158 }
1159
1160 #[test]
1161 #[cfg_attr(
1162 all(
1163 target_arch = "wasm32",
1164 target_vendor = "unknown",
1165 target_os = "unknown"
1166 ),
1167 wasm_bindgen_test
1168 )]
1169 fn test_nil() {
1170 let nil = Uuid::nil();
1171 let not_nil = new();
1172
1173 assert!(nil.is_nil());
1174 assert!(!not_nil.is_nil());
1175
1176 assert_eq!(nil.get_version(), Some(Version::Nil));
1177 assert_eq!(not_nil.get_version(), Some(Version::Random));
1178
1179 assert_eq!(
1180 nil,
1181 Builder::from_bytes([0; 16])
1182 .with_version(Version::Nil)
1183 .into_uuid()
1184 );
1185 }
1186
1187 #[test]
1188 #[cfg_attr(
1189 all(
1190 target_arch = "wasm32",
1191 target_vendor = "unknown",
1192 target_os = "unknown"
1193 ),
1194 wasm_bindgen_test
1195 )]
1196 fn test_max() {
1197 let max = Uuid::max();
1198 let not_max = new();
1199
1200 assert!(max.is_max());
1201 assert!(!not_max.is_max());
1202
1203 assert_eq!(max.get_version(), Some(Version::Max));
1204 assert_eq!(not_max.get_version(), Some(Version::Random));
1205
1206 assert_eq!(
1207 max,
1208 Builder::from_bytes([0xff; 16])
1209 .with_version(Version::Max)
1210 .into_uuid()
1211 );
1212 }
1213
1214 #[test]
1215 #[cfg_attr(
1216 all(
1217 target_arch = "wasm32",
1218 target_vendor = "unknown",
1219 target_os = "unknown"
1220 ),
1221 wasm_bindgen_test
1222 )]
1223 fn test_predefined_namespaces() {
1224 assert_eq!(
1225 Uuid::NAMESPACE_DNS.hyphenated().to_string(),
1226 "6ba7b810-9dad-11d1-80b4-00c04fd430c8"
1227 );
1228 assert_eq!(
1229 Uuid::NAMESPACE_URL.hyphenated().to_string(),
1230 "6ba7b811-9dad-11d1-80b4-00c04fd430c8"
1231 );
1232 assert_eq!(
1233 Uuid::NAMESPACE_OID.hyphenated().to_string(),
1234 "6ba7b812-9dad-11d1-80b4-00c04fd430c8"
1235 );
1236 assert_eq!(
1237 Uuid::NAMESPACE_X500.hyphenated().to_string(),
1238 "6ba7b814-9dad-11d1-80b4-00c04fd430c8"
1239 );
1240 }
1241
1242 #[cfg(feature = "v3")]
1243 #[test]
1244 #[cfg_attr(
1245 all(
1246 target_arch = "wasm32",
1247 target_vendor = "unknown",
1248 target_os = "unknown"
1249 ),
1250 wasm_bindgen_test
1251 )]
1252 fn test_get_version_v3() {
1253 let uuid = Uuid::new_v3(&Uuid::NAMESPACE_DNS, "rust-lang.org".as_bytes());
1254
1255 assert_eq!(uuid.get_version().unwrap(), Version::Md5);
1256 assert_eq!(uuid.get_version_num(), 3);
1257 }
1258
1259 #[test]
1260 #[cfg_attr(
1261 all(
1262 target_arch = "wasm32",
1263 target_vendor = "unknown",
1264 target_os = "unknown"
1265 ),
1266 wasm_bindgen_test
1267 )]
1268 fn test_get_timestamp_unsupported_version() {
1269 let uuid = new();
1270
1271 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1272 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1273 assert_ne!(Version::SortRand, uuid.get_version().unwrap());
1274
1275 assert!(uuid.get_timestamp().is_none());
1276 }
1277
1278 #[test]
1279 #[cfg_attr(
1280 all(
1281 target_arch = "wasm32",
1282 target_vendor = "unknown",
1283 target_os = "unknown"
1284 ),
1285 wasm_bindgen_test
1286 )]
1287 fn test_get_node_id_unsupported_version() {
1288 let uuid = new();
1289
1290 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1291 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1292
1293 assert!(uuid.get_node_id().is_none());
1294 }
1295
1296 #[test]
1297 #[cfg_attr(
1298 all(
1299 target_arch = "wasm32",
1300 target_vendor = "unknown",
1301 target_os = "unknown"
1302 ),
1303 wasm_bindgen_test
1304 )]
1305 fn test_get_variant() {
1306 let uuid1 = new();
1307 let uuid2 = Uuid::parse_str("550e8400-e29b-41d4-a716-446655440000").unwrap();
1308 let uuid3 = Uuid::parse_str("67e55044-10b1-426f-9247-bb680e5fe0c8").unwrap();
1309 let uuid4 = Uuid::parse_str("936DA01F9ABD4d9dC0C702AF85C822A8").unwrap();
1310 let uuid5 = Uuid::parse_str("F9168C5E-CEB2-4faa-D6BF-329BF39FA1E4").unwrap();
1311 let uuid6 = Uuid::parse_str("f81d4fae-7dec-11d0-7765-00a0c91e6bf6").unwrap();
1312
1313 assert_eq!(uuid1.get_variant(), Variant::RFC4122);
1314 assert_eq!(uuid2.get_variant(), Variant::RFC4122);
1315 assert_eq!(uuid3.get_variant(), Variant::RFC4122);
1316 assert_eq!(uuid4.get_variant(), Variant::Microsoft);
1317 assert_eq!(uuid5.get_variant(), Variant::Microsoft);
1318 assert_eq!(uuid6.get_variant(), Variant::NCS);
1319 }
1320
1321 #[test]
1322 #[cfg_attr(
1323 all(
1324 target_arch = "wasm32",
1325 target_vendor = "unknown",
1326 target_os = "unknown"
1327 ),
1328 wasm_bindgen_test
1329 )]
1330 fn test_to_simple_string() {
1331 let uuid1 = new();
1332 let s = uuid1.simple().to_string();
1333
1334 assert_eq!(s.len(), 32);
1335 assert!(s.chars().all(|c| c.is_digit(16)));
1336 }
1337
1338 #[test]
1339 #[cfg_attr(
1340 all(
1341 target_arch = "wasm32",
1342 target_vendor = "unknown",
1343 target_os = "unknown"
1344 ),
1345 wasm_bindgen_test
1346 )]
1347 fn test_hyphenated_string() {
1348 let uuid1 = new();
1349 let s = uuid1.hyphenated().to_string();
1350
1351 assert_eq!(36, s.len());
1352 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1353 }
1354
1355 #[test]
1356 #[cfg_attr(
1357 all(
1358 target_arch = "wasm32",
1359 target_vendor = "unknown",
1360 target_os = "unknown"
1361 ),
1362 wasm_bindgen_test
1363 )]
1364 fn test_upper_lower_hex() {
1365 use std::fmt::Write;
1366
1367 let mut buf = String::new();
1368 let u = new();
1369
1370 macro_rules! check {
1371 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1372 $buf.clear();
1373 write!($buf, $format, $target).unwrap();
1374 assert_eq!($len, buf.len());
1375 assert!($buf.chars().all($cond), "{}", $buf);
1376 };
1377 }
1378
1379 check!(buf, "{:x}", u, 36, |c| c.is_lowercase()
1380 || c.is_digit(10)
1381 || c == '-');
1382 check!(buf, "{:X}", u, 36, |c| c.is_uppercase()
1383 || c.is_digit(10)
1384 || c == '-');
1385 check!(buf, "{:#x}", u, 36, |c| c.is_lowercase()
1386 || c.is_digit(10)
1387 || c == '-');
1388 check!(buf, "{:#X}", u, 36, |c| c.is_uppercase()
1389 || c.is_digit(10)
1390 || c == '-');
1391
1392 check!(buf, "{:X}", u.hyphenated(), 36, |c| c.is_uppercase()
1393 || c.is_digit(10)
1394 || c == '-');
1395 check!(buf, "{:X}", u.simple(), 32, |c| c.is_uppercase()
1396 || c.is_digit(10));
1397 check!(buf, "{:#X}", u.hyphenated(), 36, |c| c.is_uppercase()
1398 || c.is_digit(10)
1399 || c == '-');
1400 check!(buf, "{:#X}", u.simple(), 32, |c| c.is_uppercase()
1401 || c.is_digit(10));
1402
1403 check!(buf, "{:x}", u.hyphenated(), 36, |c| c.is_lowercase()
1404 || c.is_digit(10)
1405 || c == '-');
1406 check!(buf, "{:x}", u.simple(), 32, |c| c.is_lowercase()
1407 || c.is_digit(10));
1408 check!(buf, "{:#x}", u.hyphenated(), 36, |c| c.is_lowercase()
1409 || c.is_digit(10)
1410 || c == '-');
1411 check!(buf, "{:#x}", u.simple(), 32, |c| c.is_lowercase()
1412 || c.is_digit(10));
1413 }
1414
1415 #[test]
1416 #[cfg_attr(
1417 all(
1418 target_arch = "wasm32",
1419 target_vendor = "unknown",
1420 target_os = "unknown"
1421 ),
1422 wasm_bindgen_test
1423 )]
1424 fn test_to_urn_string() {
1425 let uuid1 = new();
1426 let ss = uuid1.urn().to_string();
1427 let s = &ss[9..];
1428
1429 assert!(ss.starts_with("urn:uuid:"));
1430 assert_eq!(s.len(), 36);
1431 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1432 }
1433
1434 #[test]
1435 #[cfg_attr(
1436 all(
1437 target_arch = "wasm32",
1438 target_vendor = "unknown",
1439 target_os = "unknown"
1440 ),
1441 wasm_bindgen_test
1442 )]
1443 fn test_to_simple_string_matching() {
1444 let uuid1 = new();
1445
1446 let hs = uuid1.hyphenated().to_string();
1447 let ss = uuid1.simple().to_string();
1448
1449 let hsn = hs.chars().filter(|&c| c != '-').collect::<String>();
1450
1451 assert_eq!(hsn, ss);
1452 }
1453
1454 #[test]
1455 #[cfg_attr(
1456 all(
1457 target_arch = "wasm32",
1458 target_vendor = "unknown",
1459 target_os = "unknown"
1460 ),
1461 wasm_bindgen_test
1462 )]
1463 fn test_string_roundtrip() {
1464 let uuid = new();
1465
1466 let hs = uuid.hyphenated().to_string();
1467 let uuid_hs = Uuid::parse_str(&hs).unwrap();
1468 assert_eq!(uuid_hs, uuid);
1469
1470 let ss = uuid.to_string();
1471 let uuid_ss = Uuid::parse_str(&ss).unwrap();
1472 assert_eq!(uuid_ss, uuid);
1473 }
1474
1475 #[test]
1476 #[cfg_attr(
1477 all(
1478 target_arch = "wasm32",
1479 target_vendor = "unknown",
1480 target_os = "unknown"
1481 ),
1482 wasm_bindgen_test
1483 )]
1484 fn test_from_fields() {
1485 let d1: u32 = 0xa1a2a3a4;
1486 let d2: u16 = 0xb1b2;
1487 let d3: u16 = 0xc1c2;
1488 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1489
1490 let u = Uuid::from_fields(d1, d2, d3, &d4);
1491
1492 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1493 let result = u.simple().to_string();
1494 assert_eq!(result, expected);
1495 }
1496
1497 #[test]
1498 #[cfg_attr(
1499 all(
1500 target_arch = "wasm32",
1501 target_vendor = "unknown",
1502 target_os = "unknown"
1503 ),
1504 wasm_bindgen_test
1505 )]
1506 fn test_from_fields_le() {
1507 let d1: u32 = 0xa4a3a2a1;
1508 let d2: u16 = 0xb2b1;
1509 let d3: u16 = 0xc2c1;
1510 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1511
1512 let u = Uuid::from_fields_le(d1, d2, d3, &d4);
1513
1514 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1515 let result = u.simple().to_string();
1516 assert_eq!(result, expected);
1517 }
1518
1519 #[test]
1520 #[cfg_attr(
1521 all(
1522 target_arch = "wasm32",
1523 target_vendor = "unknown",
1524 target_os = "unknown"
1525 ),
1526 wasm_bindgen_test
1527 )]
1528 fn test_as_fields() {
1529 let u = new();
1530 let (d1, d2, d3, d4) = u.as_fields();
1531
1532 assert_ne!(d1, 0);
1533 assert_ne!(d2, 0);
1534 assert_ne!(d3, 0);
1535 assert_eq!(d4.len(), 8);
1536 assert!(!d4.iter().all(|&b| b == 0));
1537 }
1538
1539 #[test]
1540 #[cfg_attr(
1541 all(
1542 target_arch = "wasm32",
1543 target_vendor = "unknown",
1544 target_os = "unknown"
1545 ),
1546 wasm_bindgen_test
1547 )]
1548 fn test_fields_roundtrip() {
1549 let d1_in: u32 = 0xa1a2a3a4;
1550 let d2_in: u16 = 0xb1b2;
1551 let d3_in: u16 = 0xc1c2;
1552 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1553
1554 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1555 let (d1_out, d2_out, d3_out, d4_out) = u.as_fields();
1556
1557 assert_eq!(d1_in, d1_out);
1558 assert_eq!(d2_in, d2_out);
1559 assert_eq!(d3_in, d3_out);
1560 assert_eq!(d4_in, d4_out);
1561 }
1562
1563 #[test]
1564 #[cfg_attr(
1565 all(
1566 target_arch = "wasm32",
1567 target_vendor = "unknown",
1568 target_os = "unknown"
1569 ),
1570 wasm_bindgen_test
1571 )]
1572 fn test_fields_le_roundtrip() {
1573 let d1_in: u32 = 0xa4a3a2a1;
1574 let d2_in: u16 = 0xb2b1;
1575 let d3_in: u16 = 0xc2c1;
1576 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1577
1578 let u = Uuid::from_fields_le(d1_in, d2_in, d3_in, d4_in);
1579 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1580
1581 assert_eq!(d1_in, d1_out);
1582 assert_eq!(d2_in, d2_out);
1583 assert_eq!(d3_in, d3_out);
1584 assert_eq!(d4_in, d4_out);
1585 }
1586
1587 #[test]
1588 #[cfg_attr(
1589 all(
1590 target_arch = "wasm32",
1591 target_vendor = "unknown",
1592 target_os = "unknown"
1593 ),
1594 wasm_bindgen_test
1595 )]
1596 fn test_fields_le_are_actually_le() {
1597 let d1_in: u32 = 0xa1a2a3a4;
1598 let d2_in: u16 = 0xb1b2;
1599 let d3_in: u16 = 0xc1c2;
1600 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1601
1602 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1603 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1604
1605 assert_eq!(d1_in, d1_out.swap_bytes());
1606 assert_eq!(d2_in, d2_out.swap_bytes());
1607 assert_eq!(d3_in, d3_out.swap_bytes());
1608 assert_eq!(d4_in, d4_out);
1609 }
1610
1611 #[test]
1612 #[cfg_attr(
1613 all(
1614 target_arch = "wasm32",
1615 target_vendor = "unknown",
1616 target_os = "unknown"
1617 ),
1618 wasm_bindgen_test
1619 )]
1620 fn test_from_u128() {
1621 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1622
1623 let u = Uuid::from_u128(v_in);
1624
1625 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1626 let result = u.simple().to_string();
1627 assert_eq!(result, expected);
1628 }
1629
1630 #[test]
1631 #[cfg_attr(
1632 all(
1633 target_arch = "wasm32",
1634 target_vendor = "unknown",
1635 target_os = "unknown"
1636 ),
1637 wasm_bindgen_test
1638 )]
1639 fn test_from_u128_le() {
1640 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1641
1642 let u = Uuid::from_u128_le(v_in);
1643
1644 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1645 let result = u.simple().to_string();
1646 assert_eq!(result, expected);
1647 }
1648
1649 #[test]
1650 #[cfg_attr(
1651 all(
1652 target_arch = "wasm32",
1653 target_vendor = "unknown",
1654 target_os = "unknown"
1655 ),
1656 wasm_bindgen_test
1657 )]
1658 fn test_from_u64_pair() {
1659 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1660 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1661
1662 let u = Uuid::from_u64_pair(high_in, low_in);
1663
1664 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1665 let result = u.simple().to_string();
1666 assert_eq!(result, expected);
1667 }
1668
1669 #[test]
1670 #[cfg_attr(
1671 all(
1672 target_arch = "wasm32",
1673 target_vendor = "unknown",
1674 target_os = "unknown"
1675 ),
1676 wasm_bindgen_test
1677 )]
1678 fn test_u128_roundtrip() {
1679 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1680
1681 let u = Uuid::from_u128(v_in);
1682 let v_out = u.as_u128();
1683
1684 assert_eq!(v_in, v_out);
1685 }
1686
1687 #[test]
1688 #[cfg_attr(
1689 all(
1690 target_arch = "wasm32",
1691 target_vendor = "unknown",
1692 target_os = "unknown"
1693 ),
1694 wasm_bindgen_test
1695 )]
1696 fn test_u128_le_roundtrip() {
1697 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1698
1699 let u = Uuid::from_u128_le(v_in);
1700 let v_out = u.to_u128_le();
1701
1702 assert_eq!(v_in, v_out);
1703 }
1704
1705 #[test]
1706 #[cfg_attr(
1707 all(
1708 target_arch = "wasm32",
1709 target_vendor = "unknown",
1710 target_os = "unknown"
1711 ),
1712 wasm_bindgen_test
1713 )]
1714 fn test_u64_pair_roundtrip() {
1715 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1716 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1717
1718 let u = Uuid::from_u64_pair(high_in, low_in);
1719 let (high_out, low_out) = u.as_u64_pair();
1720
1721 assert_eq!(high_in, high_out);
1722 assert_eq!(low_in, low_out);
1723 }
1724
1725 #[test]
1726 #[cfg_attr(
1727 all(
1728 target_arch = "wasm32",
1729 target_vendor = "unknown",
1730 target_os = "unknown"
1731 ),
1732 wasm_bindgen_test
1733 )]
1734 fn test_u128_le_is_actually_le() {
1735 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1736
1737 let u = Uuid::from_u128(v_in);
1738 let v_out = u.to_u128_le();
1739
1740 assert_eq!(v_in, v_out.swap_bytes());
1741 }
1742
1743 #[test]
1744 #[cfg_attr(
1745 all(
1746 target_arch = "wasm32",
1747 target_vendor = "unknown",
1748 target_os = "unknown"
1749 ),
1750 wasm_bindgen_test
1751 )]
1752 fn test_from_slice() {
1753 let b = [
1754 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1755 0xd7, 0xd8,
1756 ];
1757
1758 let u = Uuid::from_slice(&b).unwrap();
1759 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1760
1761 assert_eq!(u.simple().to_string(), expected);
1762 }
1763
1764 #[test]
1765 #[cfg_attr(
1766 all(
1767 target_arch = "wasm32",
1768 target_vendor = "unknown",
1769 target_os = "unknown"
1770 ),
1771 wasm_bindgen_test
1772 )]
1773 fn test_from_bytes() {
1774 let b = [
1775 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1776 0xd7, 0xd8,
1777 ];
1778
1779 let u = Uuid::from_bytes(b);
1780 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1781
1782 assert_eq!(u.simple().to_string(), expected);
1783 }
1784
1785 #[test]
1786 #[cfg_attr(
1787 all(
1788 target_arch = "wasm32",
1789 target_vendor = "unknown",
1790 target_os = "unknown"
1791 ),
1792 wasm_bindgen_test
1793 )]
1794 fn test_as_bytes() {
1795 let u = new();
1796 let ub = u.as_bytes();
1797 let ur: &[u8] = u.as_ref();
1798
1799 assert_eq!(ub.len(), 16);
1800 assert_eq!(ur.len(), 16);
1801 assert!(!ub.iter().all(|&b| b == 0));
1802 assert!(!ur.iter().all(|&b| b == 0));
1803 }
1804
1805 #[test]
1806 #[cfg(feature = "std")]
1807 #[cfg_attr(
1808 all(
1809 target_arch = "wasm32",
1810 target_vendor = "unknown",
1811 target_os = "unknown"
1812 ),
1813 wasm_bindgen_test
1814 )]
1815 fn test_convert_vec() {
1816 use crate::std::{convert::TryInto, vec::Vec};
1817
1818 let u = new();
1819 let ub: &[u8] = u.as_ref();
1820
1821 let v: Vec<u8> = u.into();
1822
1823 assert_eq!(&v, ub);
1824
1825 let uv: Uuid = v.try_into().unwrap();
1826
1827 assert_eq!(uv, u);
1828 }
1829
1830 #[test]
1831 #[cfg_attr(
1832 all(
1833 target_arch = "wasm32",
1834 target_vendor = "unknown",
1835 target_os = "unknown"
1836 ),
1837 wasm_bindgen_test
1838 )]
1839 fn test_bytes_roundtrip() {
1840 let b_in: crate::Bytes = [
1841 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1842 0xd7, 0xd8,
1843 ];
1844
1845 let u = Uuid::from_slice(&b_in).unwrap();
1846
1847 let b_out = u.as_bytes();
1848
1849 assert_eq!(&b_in, b_out);
1850 }
1851
1852 #[test]
1853 #[cfg_attr(
1854 all(
1855 target_arch = "wasm32",
1856 target_vendor = "unknown",
1857 target_os = "unknown"
1858 ),
1859 wasm_bindgen_test
1860 )]
1861 fn test_bytes_le_roundtrip() {
1862 let b = [
1863 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1864 0xd7, 0xd8,
1865 ];
1866
1867 let u1 = Uuid::from_bytes(b);
1868
1869 let b_le = u1.to_bytes_le();
1870
1871 let u2 = Uuid::from_bytes_le(b_le);
1872
1873 assert_eq!(u1, u2);
1874 }
1875
1876 #[test]
1877 #[cfg_attr(
1878 all(
1879 target_arch = "wasm32",
1880 target_vendor = "unknown",
1881 target_os = "unknown"
1882 ),
1883 wasm_bindgen_test
1884 )]
1885 fn test_iterbytes_impl_for_uuid() {
1886 let mut set = std::collections::HashSet::new();
1887 let id1 = new();
1888 let id2 = new2();
1889 set.insert(id1.clone());
1890
1891 assert!(set.contains(&id1));
1892 assert!(!set.contains(&id2));
1893 }
1894}