wgpu/api/buffer.rs
1use std::{
2 error, fmt,
3 ops::{Bound, Deref, DerefMut, Range, RangeBounds},
4 sync::Arc,
5 thread,
6};
7
8use parking_lot::Mutex;
9
10use crate::context::DynContext;
11use crate::*;
12
13/// Handle to a GPU-accessible buffer.
14///
15/// Created with [`Device::create_buffer`] or
16/// [`DeviceExt::create_buffer_init`](util::DeviceExt::create_buffer_init).
17///
18/// Corresponds to [WebGPU `GPUBuffer`](https://gpuweb.github.io/gpuweb/#buffer-interface).
19///
20/// A `Buffer`'s bytes have "interior mutability": functions like
21/// [`Queue::write_buffer`] or [mapping] a buffer for writing only require a
22/// `&Buffer`, not a `&mut Buffer`, even though they modify its contents. `wgpu`
23/// prevents simultaneous reads and writes of buffer contents using run-time
24/// checks.
25///
26/// [mapping]: Buffer#mapping-buffers
27///
28/// # Mapping buffers
29///
30/// If a `Buffer` is created with the appropriate [`usage`], it can be *mapped*:
31/// you can make its contents accessible to the CPU as an ordinary `&[u8]` or
32/// `&mut [u8]` slice of bytes. Buffers created with the
33/// [`mapped_at_creation`][mac] flag set are also mapped initially.
34///
35/// Depending on the hardware, the buffer could be memory shared between CPU and
36/// GPU, so that the CPU has direct access to the same bytes the GPU will
37/// consult; or it may be ordinary CPU memory, whose contents the system must
38/// copy to/from the GPU as needed. This crate's API is designed to work the
39/// same way in either case: at any given time, a buffer is either mapped and
40/// available to the CPU, or unmapped and ready for use by the GPU, but never
41/// both. This makes it impossible for either side to observe changes by the
42/// other immediately, and any necessary transfers can be carried out when the
43/// buffer transitions from one state to the other.
44///
45/// There are two ways to map a buffer:
46///
47/// - If [`BufferDescriptor::mapped_at_creation`] is `true`, then the entire
48/// buffer is mapped when it is created. This is the easiest way to initialize
49/// a new buffer. You can set `mapped_at_creation` on any kind of buffer,
50/// regardless of its [`usage`] flags.
51///
52/// - If the buffer's [`usage`] includes the [`MAP_READ`] or [`MAP_WRITE`]
53/// flags, then you can call `buffer.slice(range).map_async(mode, callback)`
54/// to map the portion of `buffer` given by `range`. This waits for the GPU to
55/// finish using the buffer, and invokes `callback` as soon as the buffer is
56/// safe for the CPU to access.
57///
58/// Once a buffer is mapped:
59///
60/// - You can call `buffer.slice(range).get_mapped_range()` to obtain a
61/// [`BufferView`], which dereferences to a `&[u8]` that you can use to read
62/// the buffer's contents.
63///
64/// - Or, you can call `buffer.slice(range).get_mapped_range_mut()` to obtain a
65/// [`BufferViewMut`], which dereferences to a `&mut [u8]` that you can use to
66/// read and write the buffer's contents.
67///
68/// The given `range` must fall within the mapped portion of the buffer. If you
69/// attempt to access overlapping ranges, even for shared access only, these
70/// methods panic.
71///
72/// While a buffer is mapped, you may not submit any commands to the GPU that
73/// access it. You may record command buffers that use the buffer, but if you
74/// submit them while the buffer is mapped, submission will panic.
75///
76/// When you are done using the buffer on the CPU, you must call
77/// [`Buffer::unmap`] to make it available for use by the GPU again. All
78/// [`BufferView`] and [`BufferViewMut`] views referring to the buffer must be
79/// dropped before you unmap it; otherwise, [`Buffer::unmap`] will panic.
80///
81/// # Example
82///
83/// If `buffer` was created with [`BufferUsages::MAP_WRITE`], we could fill it
84/// with `f32` values like this:
85///
86/// ```no_run
87/// # mod bytemuck {
88/// # pub fn cast_slice_mut(bytes: &mut [u8]) -> &mut [f32] { todo!() }
89/// # }
90/// # let device: wgpu::Device = todo!();
91/// # let buffer: wgpu::Buffer = todo!();
92/// let buffer = std::sync::Arc::new(buffer);
93/// let capturable = buffer.clone();
94/// buffer.slice(..).map_async(wgpu::MapMode::Write, move |result| {
95/// if result.is_ok() {
96/// let mut view = capturable.slice(..).get_mapped_range_mut();
97/// let floats: &mut [f32] = bytemuck::cast_slice_mut(&mut view);
98/// floats.fill(42.0);
99/// drop(view);
100/// capturable.unmap();
101/// }
102/// });
103/// ```
104///
105/// This code takes the following steps:
106///
107/// - First, it moves `buffer` into an [`Arc`], and makes a clone for capture by
108/// the callback passed to [`map_async`]. Since a [`map_async`] callback may be
109/// invoked from another thread, interaction between the callback and the
110/// thread calling [`map_async`] generally requires some sort of shared heap
111/// data like this. In real code, the [`Arc`] would probably own some larger
112/// structure that itself owns `buffer`.
113///
114/// - Then, it calls [`Buffer::slice`] to make a [`BufferSlice`] referring to
115/// the buffer's entire contents.
116///
117/// - Next, it calls [`BufferSlice::map_async`] to request that the bytes to
118/// which the slice refers be made accessible to the CPU ("mapped"). This may
119/// entail waiting for previously enqueued operations on `buffer` to finish.
120/// Although [`map_async`] itself always returns immediately, it saves the
121/// callback function to be invoked later.
122///
123/// - When some later call to [`Device::poll`] or [`Instance::poll_all`] (not
124/// shown in this example) determines that the buffer is mapped and ready for
125/// the CPU to use, it invokes the callback function.
126///
127/// - The callback function calls [`Buffer::slice`] and then
128/// [`BufferSlice::get_mapped_range_mut`] to obtain a [`BufferViewMut`], which
129/// dereferences to a `&mut [u8]` slice referring to the buffer's bytes.
130///
131/// - It then uses the [`bytemuck`] crate to turn the `&mut [u8]` into a `&mut
132/// [f32]`, and calls the slice [`fill`] method to fill the buffer with a
133/// useful value.
134///
135/// - Finally, the callback drops the view and calls [`Buffer::unmap`] to unmap
136/// the buffer. In real code, the callback would also need to do some sort of
137/// synchronization to let the rest of the program know that it has completed
138/// its work.
139///
140/// If using [`map_async`] directly is awkward, you may find it more convenient to
141/// use [`Queue::write_buffer`] and [`util::DownloadBuffer::read_buffer`].
142/// However, those each have their own tradeoffs; the asynchronous nature of GPU
143/// execution makes it hard to avoid friction altogether.
144///
145/// [`Arc`]: std::sync::Arc
146/// [`map_async`]: BufferSlice::map_async
147/// [`bytemuck`]: https://crates.io/crates/bytemuck
148/// [`fill`]: slice::fill
149///
150/// ## Mapping buffers on the web
151///
152/// When compiled to WebAssembly and running in a browser content process,
153/// `wgpu` implements its API in terms of the browser's WebGPU implementation.
154/// In this context, `wgpu` is further isolated from the GPU:
155///
156/// - Depending on the browser's WebGPU implementation, mapping and unmapping
157/// buffers probably entails copies between WebAssembly linear memory and the
158/// graphics driver's buffers.
159///
160/// - All modern web browsers isolate web content in its own sandboxed process,
161/// which can only interact with the GPU via interprocess communication (IPC).
162/// Although most browsers' IPC systems use shared memory for large data
163/// transfers, there will still probably need to be copies into and out of the
164/// shared memory buffers.
165///
166/// All of these copies contribute to the cost of buffer mapping in this
167/// configuration.
168///
169/// [`usage`]: BufferDescriptor::usage
170/// [mac]: BufferDescriptor::mapped_at_creation
171/// [`MAP_READ`]: BufferUsages::MAP_READ
172/// [`MAP_WRITE`]: BufferUsages::MAP_WRITE
173#[derive(Debug)]
174pub struct Buffer {
175 pub(crate) context: Arc<C>,
176 pub(crate) data: Box<Data>,
177 pub(crate) map_context: Mutex<MapContext>,
178 pub(crate) size: wgt::BufferAddress,
179 pub(crate) usage: BufferUsages,
180 // Todo: missing map_state https://www.w3.org/TR/webgpu/#dom-gpubuffer-mapstate
181}
182#[cfg(send_sync)]
183static_assertions::assert_impl_all!(Buffer: Send, Sync);
184
185super::impl_partialeq_eq_hash!(Buffer);
186
187impl Buffer {
188 /// Return the binding view of the entire buffer.
189 pub fn as_entire_binding(&self) -> BindingResource<'_> {
190 BindingResource::Buffer(self.as_entire_buffer_binding())
191 }
192
193 /// Return the binding view of the entire buffer.
194 pub fn as_entire_buffer_binding(&self) -> BufferBinding<'_> {
195 BufferBinding {
196 buffer: self,
197 offset: 0,
198 size: None,
199 }
200 }
201
202 /// Returns the inner hal Buffer using a callback. The hal buffer will be `None` if the
203 /// backend type argument does not match with this wgpu Buffer
204 ///
205 /// # Safety
206 ///
207 /// - The raw handle obtained from the hal Buffer must not be manually destroyed
208 #[cfg(wgpu_core)]
209 pub unsafe fn as_hal<A: wgc::hal_api::HalApi, F: FnOnce(Option<&A::Buffer>) -> R, R>(
210 &self,
211 hal_buffer_callback: F,
212 ) -> R {
213 if let Some(ctx) = self
214 .context
215 .as_any()
216 .downcast_ref::<crate::backend::ContextWgpuCore>()
217 {
218 unsafe {
219 ctx.buffer_as_hal::<A, F, R>(
220 crate::context::downcast_ref(self.data.as_ref()),
221 hal_buffer_callback,
222 )
223 }
224 } else {
225 hal_buffer_callback(None)
226 }
227 }
228
229 /// Return a slice of a [`Buffer`]'s bytes.
230 ///
231 /// Return a [`BufferSlice`] referring to the portion of `self`'s contents
232 /// indicated by `bounds`. Regardless of what sort of data `self` stores,
233 /// `bounds` start and end are given in bytes.
234 ///
235 /// A [`BufferSlice`] can be used to supply vertex and index data, or to map
236 /// buffer contents for access from the CPU. See the [`BufferSlice`]
237 /// documentation for details.
238 ///
239 /// The `range` argument can be half or fully unbounded: for example,
240 /// `buffer.slice(..)` refers to the entire buffer, and `buffer.slice(n..)`
241 /// refers to the portion starting at the `n`th byte and extending to the
242 /// end of the buffer.
243 pub fn slice<S: RangeBounds<BufferAddress>>(&self, bounds: S) -> BufferSlice<'_> {
244 let (offset, size) = range_to_offset_size(bounds);
245 check_buffer_bounds(self.size, offset, size);
246 BufferSlice {
247 buffer: self,
248 offset,
249 size,
250 }
251 }
252
253 /// Flushes any pending write operations and unmaps the buffer from host memory.
254 pub fn unmap(&self) {
255 self.map_context.lock().reset();
256 DynContext::buffer_unmap(&*self.context, self.data.as_ref());
257 }
258
259 /// Destroy the associated native resources as soon as possible.
260 pub fn destroy(&self) {
261 DynContext::buffer_destroy(&*self.context, self.data.as_ref());
262 }
263
264 /// Returns the length of the buffer allocation in bytes.
265 ///
266 /// This is always equal to the `size` that was specified when creating the buffer.
267 pub fn size(&self) -> BufferAddress {
268 self.size
269 }
270
271 /// Returns the allowed usages for this `Buffer`.
272 ///
273 /// This is always equal to the `usage` that was specified when creating the buffer.
274 pub fn usage(&self) -> BufferUsages {
275 self.usage
276 }
277}
278
279/// A slice of a [`Buffer`], to be mapped, used for vertex or index data, or the like.
280///
281/// You can create a `BufferSlice` by calling [`Buffer::slice`]:
282///
283/// ```no_run
284/// # let buffer: wgpu::Buffer = todo!();
285/// let slice = buffer.slice(10..20);
286/// ```
287///
288/// This returns a slice referring to the second ten bytes of `buffer`. To get a
289/// slice of the entire `Buffer`:
290///
291/// ```no_run
292/// # let buffer: wgpu::Buffer = todo!();
293/// let whole_buffer_slice = buffer.slice(..);
294/// ```
295///
296/// You can pass buffer slices to methods like [`RenderPass::set_vertex_buffer`]
297/// and [`RenderPass::set_index_buffer`] to indicate which portion of the buffer
298/// a draw call should consult.
299///
300/// To access the slice's contents on the CPU, you must first [map] the buffer,
301/// and then call [`BufferSlice::get_mapped_range`] or
302/// [`BufferSlice::get_mapped_range_mut`] to obtain a view of the slice's
303/// contents. See the documentation on [mapping][map] for more details,
304/// including example code.
305///
306/// Unlike a Rust shared slice `&[T]`, whose existence guarantees that
307/// nobody else is modifying the `T` values to which it refers, a
308/// [`BufferSlice`] doesn't guarantee that the buffer's contents aren't
309/// changing. You can still record and submit commands operating on the
310/// buffer while holding a [`BufferSlice`]. A [`BufferSlice`] simply
311/// represents a certain range of the buffer's bytes.
312///
313/// The `BufferSlice` type is unique to the Rust API of `wgpu`. In the WebGPU
314/// specification, an offset and size are specified as arguments to each call
315/// working with the [`Buffer`], instead.
316///
317/// [map]: Buffer#mapping-buffers
318#[derive(Copy, Clone, Debug)]
319pub struct BufferSlice<'a> {
320 pub(crate) buffer: &'a Buffer,
321 pub(crate) offset: BufferAddress,
322 pub(crate) size: Option<BufferSize>,
323}
324#[cfg(send_sync)]
325static_assertions::assert_impl_all!(BufferSlice<'_>: Send, Sync);
326
327impl<'a> BufferSlice<'a> {
328 /// Map the buffer. Buffer is ready to map once the callback is called.
329 ///
330 /// For the callback to complete, either `queue.submit(..)`, `instance.poll_all(..)`, or `device.poll(..)`
331 /// must be called elsewhere in the runtime, possibly integrated into an event loop or run on a separate thread.
332 ///
333 /// The callback will be called on the thread that first calls the above functions after the gpu work
334 /// has completed. There are no restrictions on the code you can run in the callback, however on native the
335 /// call to the function will not complete until the callback returns, so prefer keeping callbacks short
336 /// and used to set flags, send messages, etc.
337 pub fn map_async(
338 &self,
339 mode: MapMode,
340 callback: impl FnOnce(Result<(), BufferAsyncError>) + WasmNotSend + 'static,
341 ) {
342 let mut mc = self.buffer.map_context.lock();
343 assert_eq!(mc.initial_range, 0..0, "Buffer is already mapped");
344 let end = match self.size {
345 Some(s) => self.offset + s.get(),
346 None => mc.total_size,
347 };
348 mc.initial_range = self.offset..end;
349
350 DynContext::buffer_map_async(
351 &*self.buffer.context,
352 self.buffer.data.as_ref(),
353 mode,
354 self.offset..end,
355 Box::new(callback),
356 )
357 }
358
359 /// Gain read-only access to the bytes of a [mapped] [`Buffer`].
360 ///
361 /// Return a [`BufferView`] referring to the buffer range represented by
362 /// `self`. See the documentation for [`BufferView`] for details.
363 ///
364 /// # Panics
365 ///
366 /// - This panics if the buffer to which `self` refers is not currently
367 /// [mapped].
368 ///
369 /// - If you try to create overlapping views of a buffer, mutable or
370 /// otherwise, `get_mapped_range` will panic.
371 ///
372 /// [mapped]: Buffer#mapping-buffers
373 pub fn get_mapped_range(&self) -> BufferView<'a> {
374 let end = self.buffer.map_context.lock().add(self.offset, self.size);
375 let data = DynContext::buffer_get_mapped_range(
376 &*self.buffer.context,
377 self.buffer.data.as_ref(),
378 self.offset..end,
379 );
380 BufferView { slice: *self, data }
381 }
382
383 /// Synchronously and immediately map a buffer for reading. If the buffer is not immediately mappable
384 /// through [`BufferDescriptor::mapped_at_creation`] or [`BufferSlice::map_async`], will fail.
385 ///
386 /// This is useful when targeting WebGPU and you want to pass mapped data directly to js.
387 /// Unlike `get_mapped_range` which unconditionally copies mapped data into the wasm heap,
388 /// this function directly hands you the ArrayBuffer that we mapped the data into in js.
389 ///
390 /// This is only available on WebGPU, on any other backends this will return `None`.
391 #[cfg(webgpu)]
392 pub fn get_mapped_range_as_array_buffer(&self) -> Option<js_sys::ArrayBuffer> {
393 self.buffer
394 .context
395 .as_any()
396 .downcast_ref::<crate::backend::ContextWebGpu>()
397 .map(|ctx| {
398 let buffer_data = crate::context::downcast_ref(self.buffer.data.as_ref());
399 let end = self.buffer.map_context.lock().add(self.offset, self.size);
400 ctx.buffer_get_mapped_range_as_array_buffer(buffer_data, self.offset..end)
401 })
402 }
403
404 /// Gain write access to the bytes of a [mapped] [`Buffer`].
405 ///
406 /// Return a [`BufferViewMut`] referring to the buffer range represented by
407 /// `self`. See the documentation for [`BufferViewMut`] for more details.
408 ///
409 /// # Panics
410 ///
411 /// - This panics if the buffer to which `self` refers is not currently
412 /// [mapped].
413 ///
414 /// - If you try to create overlapping views of a buffer, mutable or
415 /// otherwise, `get_mapped_range_mut` will panic.
416 ///
417 /// [mapped]: Buffer#mapping-buffers
418 pub fn get_mapped_range_mut(&self) -> BufferViewMut<'a> {
419 let end = self.buffer.map_context.lock().add(self.offset, self.size);
420 let data = DynContext::buffer_get_mapped_range(
421 &*self.buffer.context,
422 self.buffer.data.as_ref(),
423 self.offset..end,
424 );
425 BufferViewMut {
426 slice: *self,
427 data,
428 readable: self.buffer.usage.contains(BufferUsages::MAP_READ),
429 }
430 }
431}
432
433/// The mapped portion of a buffer, if any, and its outstanding views.
434///
435/// This ensures that views fall within the mapped range and don't overlap, and
436/// also takes care of turning `Option<BufferSize>` sizes into actual buffer
437/// offsets.
438#[derive(Debug)]
439pub(crate) struct MapContext {
440 /// The overall size of the buffer.
441 ///
442 /// This is just a convenient copy of [`Buffer::size`].
443 pub(crate) total_size: BufferAddress,
444
445 /// The range of the buffer that is mapped.
446 ///
447 /// This is `0..0` if the buffer is not mapped. This becomes non-empty when
448 /// the buffer is mapped at creation time, and when you call `map_async` on
449 /// some [`BufferSlice`] (so technically, it indicates the portion that is
450 /// *or has been requested to be* mapped.)
451 ///
452 /// All [`BufferView`]s and [`BufferViewMut`]s must fall within this range.
453 pub(crate) initial_range: Range<BufferAddress>,
454
455 /// The ranges covered by all outstanding [`BufferView`]s and
456 /// [`BufferViewMut`]s. These are non-overlapping, and are all contained
457 /// within `initial_range`.
458 sub_ranges: Vec<Range<BufferAddress>>,
459}
460
461impl MapContext {
462 pub(crate) fn new(total_size: BufferAddress) -> Self {
463 Self {
464 total_size,
465 initial_range: 0..0,
466 sub_ranges: Vec::new(),
467 }
468 }
469
470 /// Record that the buffer is no longer mapped.
471 fn reset(&mut self) {
472 self.initial_range = 0..0;
473
474 assert!(
475 self.sub_ranges.is_empty(),
476 "You cannot unmap a buffer that still has accessible mapped views"
477 );
478 }
479
480 /// Record that the `size` bytes of the buffer at `offset` are now viewed.
481 ///
482 /// Return the byte offset within the buffer of the end of the viewed range.
483 ///
484 /// # Panics
485 ///
486 /// This panics if the given range overlaps with any existing range.
487 fn add(&mut self, offset: BufferAddress, size: Option<BufferSize>) -> BufferAddress {
488 let end = match size {
489 Some(s) => offset + s.get(),
490 None => self.initial_range.end,
491 };
492 assert!(self.initial_range.start <= offset && end <= self.initial_range.end);
493 // This check is essential for avoiding undefined behavior: it is the
494 // only thing that ensures that `&mut` references to the buffer's
495 // contents don't alias anything else.
496 for sub in self.sub_ranges.iter() {
497 assert!(
498 end <= sub.start || offset >= sub.end,
499 "Intersecting map range with {sub:?}"
500 );
501 }
502 self.sub_ranges.push(offset..end);
503 end
504 }
505
506 /// Record that the `size` bytes of the buffer at `offset` are no longer viewed.
507 ///
508 /// # Panics
509 ///
510 /// This panics if the given range does not exactly match one previously
511 /// passed to [`add`].
512 ///
513 /// [`add]`: MapContext::add
514 fn remove(&mut self, offset: BufferAddress, size: Option<BufferSize>) {
515 let end = match size {
516 Some(s) => offset + s.get(),
517 None => self.initial_range.end,
518 };
519
520 let index = self
521 .sub_ranges
522 .iter()
523 .position(|r| *r == (offset..end))
524 .expect("unable to remove range from map context");
525 self.sub_ranges.swap_remove(index);
526 }
527}
528
529/// Describes a [`Buffer`].
530///
531/// For use with [`Device::create_buffer`].
532///
533/// Corresponds to [WebGPU `GPUBufferDescriptor`](
534/// https://gpuweb.github.io/gpuweb/#dictdef-gpubufferdescriptor).
535pub type BufferDescriptor<'a> = wgt::BufferDescriptor<Label<'a>>;
536static_assertions::assert_impl_all!(BufferDescriptor<'_>: Send, Sync);
537
538/// Error occurred when trying to async map a buffer.
539#[derive(Clone, PartialEq, Eq, Debug)]
540pub struct BufferAsyncError;
541static_assertions::assert_impl_all!(BufferAsyncError: Send, Sync);
542
543impl fmt::Display for BufferAsyncError {
544 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
545 write!(f, "Error occurred when trying to async map a buffer")
546 }
547}
548
549impl error::Error for BufferAsyncError {}
550
551/// Type of buffer mapping.
552#[derive(Debug, Clone, Copy, Eq, PartialEq)]
553pub enum MapMode {
554 /// Map only for reading
555 Read,
556 /// Map only for writing
557 Write,
558}
559static_assertions::assert_impl_all!(MapMode: Send, Sync);
560
561/// A read-only view of a mapped buffer's bytes.
562///
563/// To get a `BufferView`, first [map] the buffer, and then
564/// call `buffer.slice(range).get_mapped_range()`.
565///
566/// `BufferView` dereferences to `&[u8]`, so you can use all the usual Rust
567/// slice methods to access the buffer's contents. It also implements
568/// `AsRef<[u8]>`, if that's more convenient.
569///
570/// Before the buffer can be unmapped, all `BufferView`s observing it
571/// must be dropped. Otherwise, the call to [`Buffer::unmap`] will panic.
572///
573/// For example code, see the documentation on [mapping buffers][map].
574///
575/// [map]: Buffer#mapping-buffers
576/// [`map_async`]: BufferSlice::map_async
577#[derive(Debug)]
578pub struct BufferView<'a> {
579 slice: BufferSlice<'a>,
580 data: Box<dyn crate::context::BufferMappedRange>,
581}
582
583impl std::ops::Deref for BufferView<'_> {
584 type Target = [u8];
585
586 #[inline]
587 fn deref(&self) -> &[u8] {
588 self.data.slice()
589 }
590}
591
592impl AsRef<[u8]> for BufferView<'_> {
593 #[inline]
594 fn as_ref(&self) -> &[u8] {
595 self.data.slice()
596 }
597}
598
599/// A write-only view of a mapped buffer's bytes.
600///
601/// To get a `BufferViewMut`, first [map] the buffer, and then
602/// call `buffer.slice(range).get_mapped_range_mut()`.
603///
604/// `BufferViewMut` dereferences to `&mut [u8]`, so you can use all the usual
605/// Rust slice methods to access the buffer's contents. It also implements
606/// `AsMut<[u8]>`, if that's more convenient.
607///
608/// It is possible to read the buffer using this view, but doing so is not
609/// recommended, as it is likely to be slow.
610///
611/// Before the buffer can be unmapped, all `BufferViewMut`s observing it
612/// must be dropped. Otherwise, the call to [`Buffer::unmap`] will panic.
613///
614/// For example code, see the documentation on [mapping buffers][map].
615///
616/// [map]: Buffer#mapping-buffers
617#[derive(Debug)]
618pub struct BufferViewMut<'a> {
619 slice: BufferSlice<'a>,
620 data: Box<dyn crate::context::BufferMappedRange>,
621 readable: bool,
622}
623
624impl AsMut<[u8]> for BufferViewMut<'_> {
625 #[inline]
626 fn as_mut(&mut self) -> &mut [u8] {
627 self.data.slice_mut()
628 }
629}
630
631impl Deref for BufferViewMut<'_> {
632 type Target = [u8];
633
634 fn deref(&self) -> &Self::Target {
635 if !self.readable {
636 log::warn!("Reading from a BufferViewMut is slow and not recommended.");
637 }
638
639 self.data.slice()
640 }
641}
642
643impl DerefMut for BufferViewMut<'_> {
644 fn deref_mut(&mut self) -> &mut Self::Target {
645 self.data.slice_mut()
646 }
647}
648
649impl Drop for BufferView<'_> {
650 fn drop(&mut self) {
651 self.slice
652 .buffer
653 .map_context
654 .lock()
655 .remove(self.slice.offset, self.slice.size);
656 }
657}
658
659impl Drop for BufferViewMut<'_> {
660 fn drop(&mut self) {
661 self.slice
662 .buffer
663 .map_context
664 .lock()
665 .remove(self.slice.offset, self.slice.size);
666 }
667}
668
669impl Drop for Buffer {
670 fn drop(&mut self) {
671 if !thread::panicking() {
672 self.context.buffer_drop(self.data.as_ref());
673 }
674 }
675}
676
677fn check_buffer_bounds(
678 buffer_size: BufferAddress,
679 offset: BufferAddress,
680 size: Option<BufferSize>,
681) {
682 // A slice of length 0 is invalid, so the offset must not be equal to or greater than the buffer size.
683 if offset >= buffer_size {
684 panic!(
685 "slice offset {} is out of range for buffer of size {}",
686 offset, buffer_size
687 );
688 }
689
690 if let Some(size) = size {
691 // Detect integer overflow.
692 let end = offset.checked_add(size.get());
693 if end.map_or(true, |end| end > buffer_size) {
694 panic!(
695 "slice offset {} size {} is out of range for buffer of size {}",
696 offset, size, buffer_size
697 );
698 }
699 }
700}
701
702fn range_to_offset_size<S: RangeBounds<BufferAddress>>(
703 bounds: S,
704) -> (BufferAddress, Option<BufferSize>) {
705 let offset = match bounds.start_bound() {
706 Bound::Included(&bound) => bound,
707 Bound::Excluded(&bound) => bound + 1,
708 Bound::Unbounded => 0,
709 };
710 let size = match bounds.end_bound() {
711 Bound::Included(&bound) => Some(bound + 1 - offset),
712 Bound::Excluded(&bound) => Some(bound - offset),
713 Bound::Unbounded => None,
714 }
715 .map(|size| BufferSize::new(size).expect("Buffer slices can not be empty"));
716
717 (offset, size)
718}
719
720#[cfg(test)]
721mod tests {
722 use super::{check_buffer_bounds, range_to_offset_size, BufferSize};
723
724 #[test]
725 fn range_to_offset_size_works() {
726 assert_eq!(range_to_offset_size(0..2), (0, BufferSize::new(2)));
727 assert_eq!(range_to_offset_size(2..5), (2, BufferSize::new(3)));
728 assert_eq!(range_to_offset_size(..), (0, None));
729 assert_eq!(range_to_offset_size(21..), (21, None));
730 assert_eq!(range_to_offset_size(0..), (0, None));
731 assert_eq!(range_to_offset_size(..21), (0, BufferSize::new(21)));
732 }
733
734 #[test]
735 #[should_panic]
736 fn range_to_offset_size_panics_for_empty_range() {
737 range_to_offset_size(123..123);
738 }
739
740 #[test]
741 #[should_panic]
742 fn range_to_offset_size_panics_for_unbounded_empty_range() {
743 range_to_offset_size(..0);
744 }
745
746 #[test]
747 #[should_panic]
748 fn check_buffer_bounds_panics_for_offset_at_size() {
749 check_buffer_bounds(100, 100, None);
750 }
751
752 #[test]
753 fn check_buffer_bounds_works_for_end_in_range() {
754 check_buffer_bounds(200, 100, BufferSize::new(50));
755 check_buffer_bounds(200, 100, BufferSize::new(100));
756 check_buffer_bounds(u64::MAX, u64::MAX - 100, BufferSize::new(100));
757 check_buffer_bounds(u64::MAX, 0, BufferSize::new(u64::MAX));
758 check_buffer_bounds(u64::MAX, 1, BufferSize::new(u64::MAX - 1));
759 }
760
761 #[test]
762 #[should_panic]
763 fn check_buffer_bounds_panics_for_end_over_size() {
764 check_buffer_bounds(200, 100, BufferSize::new(101));
765 }
766
767 #[test]
768 #[should_panic]
769 fn check_buffer_bounds_panics_for_end_wraparound() {
770 check_buffer_bounds(u64::MAX, 1, BufferSize::new(u64::MAX));
771 }
772}