wgpu/api/buffer.rs
1use std::{
2 error, fmt,
3 ops::{Bound, Deref, DerefMut, Range, RangeBounds},
4 sync::Arc,
5};
6
7use parking_lot::Mutex;
8
9use crate::*;
10
11/// Handle to a GPU-accessible buffer.
12///
13/// Created with [`Device::create_buffer`] or
14/// [`DeviceExt::create_buffer_init`](util::DeviceExt::create_buffer_init).
15///
16/// Corresponds to [WebGPU `GPUBuffer`](https://gpuweb.github.io/gpuweb/#buffer-interface).
17///
18/// A `Buffer`'s bytes have "interior mutability": functions like
19/// [`Queue::write_buffer`] or [mapping] a buffer for writing only require a
20/// `&Buffer`, not a `&mut Buffer`, even though they modify its contents. `wgpu`
21/// prevents simultaneous reads and writes of buffer contents using run-time
22/// checks.
23///
24/// [mapping]: Buffer#mapping-buffers
25///
26/// # Mapping buffers
27///
28/// If a `Buffer` is created with the appropriate [`usage`], it can be *mapped*:
29/// you can make its contents accessible to the CPU as an ordinary `&[u8]` or
30/// `&mut [u8]` slice of bytes. Buffers created with the
31/// [`mapped_at_creation`][mac] flag set are also mapped initially.
32///
33/// Depending on the hardware, the buffer could be memory shared between CPU and
34/// GPU, so that the CPU has direct access to the same bytes the GPU will
35/// consult; or it may be ordinary CPU memory, whose contents the system must
36/// copy to/from the GPU as needed. This crate's API is designed to work the
37/// same way in either case: at any given time, a buffer is either mapped and
38/// available to the CPU, or unmapped and ready for use by the GPU, but never
39/// both. This makes it impossible for either side to observe changes by the
40/// other immediately, and any necessary transfers can be carried out when the
41/// buffer transitions from one state to the other.
42///
43/// There are two ways to map a buffer:
44///
45/// - If [`BufferDescriptor::mapped_at_creation`] is `true`, then the entire
46/// buffer is mapped when it is created. This is the easiest way to initialize
47/// a new buffer. You can set `mapped_at_creation` on any kind of buffer,
48/// regardless of its [`usage`] flags.
49///
50/// - If the buffer's [`usage`] includes the [`MAP_READ`] or [`MAP_WRITE`]
51/// flags, then you can call `buffer.slice(range).map_async(mode, callback)`
52/// to map the portion of `buffer` given by `range`. This waits for the GPU to
53/// finish using the buffer, and invokes `callback` as soon as the buffer is
54/// safe for the CPU to access.
55///
56/// Once a buffer is mapped:
57///
58/// - You can call `buffer.slice(range).get_mapped_range()` to obtain a
59/// [`BufferView`], which dereferences to a `&[u8]` that you can use to read
60/// the buffer's contents.
61///
62/// - Or, you can call `buffer.slice(range).get_mapped_range_mut()` to obtain a
63/// [`BufferViewMut`], which dereferences to a `&mut [u8]` that you can use to
64/// read and write the buffer's contents.
65///
66/// The given `range` must fall within the mapped portion of the buffer. If you
67/// attempt to access overlapping ranges, even for shared access only, these
68/// methods panic.
69///
70/// While a buffer is mapped, you may not submit any commands to the GPU that
71/// access it. You may record command buffers that use the buffer, but if you
72/// submit them while the buffer is mapped, submission will panic.
73///
74/// When you are done using the buffer on the CPU, you must call
75/// [`Buffer::unmap`] to make it available for use by the GPU again. All
76/// [`BufferView`] and [`BufferViewMut`] views referring to the buffer must be
77/// dropped before you unmap it; otherwise, [`Buffer::unmap`] will panic.
78///
79/// # Example
80///
81/// If `buffer` was created with [`BufferUsages::MAP_WRITE`], we could fill it
82/// with `f32` values like this:
83///
84/// ```no_run
85/// # mod bytemuck {
86/// # pub fn cast_slice_mut(bytes: &mut [u8]) -> &mut [f32] { todo!() }
87/// # }
88/// # let device: wgpu::Device = todo!();
89/// # let buffer: wgpu::Buffer = todo!();
90/// let buffer = std::sync::Arc::new(buffer);
91/// let capturable = buffer.clone();
92/// buffer.slice(..).map_async(wgpu::MapMode::Write, move |result| {
93/// if result.is_ok() {
94/// let mut view = capturable.slice(..).get_mapped_range_mut();
95/// let floats: &mut [f32] = bytemuck::cast_slice_mut(&mut view);
96/// floats.fill(42.0);
97/// drop(view);
98/// capturable.unmap();
99/// }
100/// });
101/// ```
102///
103/// This code takes the following steps:
104///
105/// - First, it moves `buffer` into an [`Arc`], and makes a clone for capture by
106/// the callback passed to [`map_async`]. Since a [`map_async`] callback may be
107/// invoked from another thread, interaction between the callback and the
108/// thread calling [`map_async`] generally requires some sort of shared heap
109/// data like this. In real code, the [`Arc`] would probably own some larger
110/// structure that itself owns `buffer`.
111///
112/// - Then, it calls [`Buffer::slice`] to make a [`BufferSlice`] referring to
113/// the buffer's entire contents.
114///
115/// - Next, it calls [`BufferSlice::map_async`] to request that the bytes to
116/// which the slice refers be made accessible to the CPU ("mapped"). This may
117/// entail waiting for previously enqueued operations on `buffer` to finish.
118/// Although [`map_async`] itself always returns immediately, it saves the
119/// callback function to be invoked later.
120///
121/// - When some later call to [`Device::poll`] or [`Instance::poll_all`] (not
122/// shown in this example) determines that the buffer is mapped and ready for
123/// the CPU to use, it invokes the callback function.
124///
125/// - The callback function calls [`Buffer::slice`] and then
126/// [`BufferSlice::get_mapped_range_mut`] to obtain a [`BufferViewMut`], which
127/// dereferences to a `&mut [u8]` slice referring to the buffer's bytes.
128///
129/// - It then uses the [`bytemuck`] crate to turn the `&mut [u8]` into a `&mut
130/// [f32]`, and calls the slice [`fill`] method to fill the buffer with a
131/// useful value.
132///
133/// - Finally, the callback drops the view and calls [`Buffer::unmap`] to unmap
134/// the buffer. In real code, the callback would also need to do some sort of
135/// synchronization to let the rest of the program know that it has completed
136/// its work.
137///
138/// If using [`map_async`] directly is awkward, you may find it more convenient to
139/// use [`Queue::write_buffer`] and [`util::DownloadBuffer::read_buffer`].
140/// However, those each have their own tradeoffs; the asynchronous nature of GPU
141/// execution makes it hard to avoid friction altogether.
142///
143/// [`Arc`]: std::sync::Arc
144/// [`map_async`]: BufferSlice::map_async
145/// [`bytemuck`]: https://crates.io/crates/bytemuck
146/// [`fill`]: slice::fill
147///
148/// ## Mapping buffers on the web
149///
150/// When compiled to WebAssembly and running in a browser content process,
151/// `wgpu` implements its API in terms of the browser's WebGPU implementation.
152/// In this context, `wgpu` is further isolated from the GPU:
153///
154/// - Depending on the browser's WebGPU implementation, mapping and unmapping
155/// buffers probably entails copies between WebAssembly linear memory and the
156/// graphics driver's buffers.
157///
158/// - All modern web browsers isolate web content in its own sandboxed process,
159/// which can only interact with the GPU via interprocess communication (IPC).
160/// Although most browsers' IPC systems use shared memory for large data
161/// transfers, there will still probably need to be copies into and out of the
162/// shared memory buffers.
163///
164/// All of these copies contribute to the cost of buffer mapping in this
165/// configuration.
166///
167/// [`usage`]: BufferDescriptor::usage
168/// [mac]: BufferDescriptor::mapped_at_creation
169/// [`MAP_READ`]: BufferUsages::MAP_READ
170/// [`MAP_WRITE`]: BufferUsages::MAP_WRITE
171#[derive(Debug, Clone)]
172pub struct Buffer {
173 pub(crate) inner: dispatch::DispatchBuffer,
174 pub(crate) map_context: Arc<Mutex<MapContext>>,
175 pub(crate) size: wgt::BufferAddress,
176 pub(crate) usage: BufferUsages,
177 // Todo: missing map_state https://www.w3.org/TR/webgpu/#dom-gpubuffer-mapstate
178}
179#[cfg(send_sync)]
180static_assertions::assert_impl_all!(Buffer: Send, Sync);
181
182crate::cmp::impl_eq_ord_hash_proxy!(Buffer => .inner);
183
184impl Buffer {
185 /// Return the binding view of the entire buffer.
186 pub fn as_entire_binding(&self) -> BindingResource<'_> {
187 BindingResource::Buffer(self.as_entire_buffer_binding())
188 }
189
190 /// Return the binding view of the entire buffer.
191 pub fn as_entire_buffer_binding(&self) -> BufferBinding<'_> {
192 BufferBinding {
193 buffer: self,
194 offset: 0,
195 size: None,
196 }
197 }
198
199 /// Returns the inner hal Buffer using a callback. The hal buffer will be `None` if the
200 /// backend type argument does not match with this wgpu Buffer
201 ///
202 /// # Safety
203 ///
204 /// - The raw handle obtained from the hal Buffer must not be manually destroyed
205 #[cfg(wgpu_core)]
206 pub unsafe fn as_hal<A: wgc::hal_api::HalApi, F: FnOnce(Option<&A::Buffer>) -> R, R>(
207 &self,
208 hal_buffer_callback: F,
209 ) -> R {
210 if let Some(buffer) = self.inner.as_core_opt() {
211 unsafe {
212 buffer
213 .context
214 .buffer_as_hal::<A, F, R>(buffer, hal_buffer_callback)
215 }
216 } else {
217 hal_buffer_callback(None)
218 }
219 }
220
221 /// Return a slice of a [`Buffer`]'s bytes.
222 ///
223 /// Return a [`BufferSlice`] referring to the portion of `self`'s contents
224 /// indicated by `bounds`. Regardless of what sort of data `self` stores,
225 /// `bounds` start and end are given in bytes.
226 ///
227 /// A [`BufferSlice`] can be used to supply vertex and index data, or to map
228 /// buffer contents for access from the CPU. See the [`BufferSlice`]
229 /// documentation for details.
230 ///
231 /// The `range` argument can be half or fully unbounded: for example,
232 /// `buffer.slice(..)` refers to the entire buffer, and `buffer.slice(n..)`
233 /// refers to the portion starting at the `n`th byte and extending to the
234 /// end of the buffer.
235 pub fn slice<S: RangeBounds<BufferAddress>>(&self, bounds: S) -> BufferSlice<'_> {
236 let (offset, size) = range_to_offset_size(bounds);
237 check_buffer_bounds(self.size, offset, size);
238 BufferSlice {
239 buffer: self,
240 offset,
241 size,
242 }
243 }
244
245 /// Flushes any pending write operations and unmaps the buffer from host memory.
246 pub fn unmap(&self) {
247 self.map_context.lock().reset();
248 self.inner.unmap();
249 }
250
251 /// Destroy the associated native resources as soon as possible.
252 pub fn destroy(&self) {
253 self.inner.destroy();
254 }
255
256 /// Returns the length of the buffer allocation in bytes.
257 ///
258 /// This is always equal to the `size` that was specified when creating the buffer.
259 pub fn size(&self) -> BufferAddress {
260 self.size
261 }
262
263 /// Returns the allowed usages for this `Buffer`.
264 ///
265 /// This is always equal to the `usage` that was specified when creating the buffer.
266 pub fn usage(&self) -> BufferUsages {
267 self.usage
268 }
269}
270
271/// A slice of a [`Buffer`], to be mapped, used for vertex or index data, or the like.
272///
273/// You can create a `BufferSlice` by calling [`Buffer::slice`]:
274///
275/// ```no_run
276/// # let buffer: wgpu::Buffer = todo!();
277/// let slice = buffer.slice(10..20);
278/// ```
279///
280/// This returns a slice referring to the second ten bytes of `buffer`. To get a
281/// slice of the entire `Buffer`:
282///
283/// ```no_run
284/// # let buffer: wgpu::Buffer = todo!();
285/// let whole_buffer_slice = buffer.slice(..);
286/// ```
287///
288/// You can pass buffer slices to methods like [`RenderPass::set_vertex_buffer`]
289/// and [`RenderPass::set_index_buffer`] to indicate which portion of the buffer
290/// a draw call should consult.
291///
292/// To access the slice's contents on the CPU, you must first [map] the buffer,
293/// and then call [`BufferSlice::get_mapped_range`] or
294/// [`BufferSlice::get_mapped_range_mut`] to obtain a view of the slice's
295/// contents. See the documentation on [mapping][map] for more details,
296/// including example code.
297///
298/// Unlike a Rust shared slice `&[T]`, whose existence guarantees that
299/// nobody else is modifying the `T` values to which it refers, a
300/// [`BufferSlice`] doesn't guarantee that the buffer's contents aren't
301/// changing. You can still record and submit commands operating on the
302/// buffer while holding a [`BufferSlice`]. A [`BufferSlice`] simply
303/// represents a certain range of the buffer's bytes.
304///
305/// The `BufferSlice` type is unique to the Rust API of `wgpu`. In the WebGPU
306/// specification, an offset and size are specified as arguments to each call
307/// working with the [`Buffer`], instead.
308///
309/// [map]: Buffer#mapping-buffers
310#[derive(Copy, Clone, Debug)]
311pub struct BufferSlice<'a> {
312 pub(crate) buffer: &'a Buffer,
313 pub(crate) offset: BufferAddress,
314 pub(crate) size: Option<BufferSize>,
315}
316#[cfg(send_sync)]
317static_assertions::assert_impl_all!(BufferSlice<'_>: Send, Sync);
318
319impl<'a> BufferSlice<'a> {
320 /// Map the buffer. Buffer is ready to map once the callback is called.
321 ///
322 /// For the callback to complete, either `queue.submit(..)`, `instance.poll_all(..)`, or `device.poll(..)`
323 /// must be called elsewhere in the runtime, possibly integrated into an event loop or run on a separate thread.
324 ///
325 /// The callback will be called on the thread that first calls the above functions after the gpu work
326 /// has completed. There are no restrictions on the code you can run in the callback, however on native the
327 /// call to the function will not complete until the callback returns, so prefer keeping callbacks short
328 /// and used to set flags, send messages, etc.
329 pub fn map_async(
330 &self,
331 mode: MapMode,
332 callback: impl FnOnce(Result<(), BufferAsyncError>) + WasmNotSend + 'static,
333 ) {
334 let mut mc = self.buffer.map_context.lock();
335 assert_eq!(mc.initial_range, 0..0, "Buffer is already mapped");
336 let end = match self.size {
337 Some(s) => self.offset + s.get(),
338 None => mc.total_size,
339 };
340 mc.initial_range = self.offset..end;
341
342 self.buffer
343 .inner
344 .map_async(mode, self.offset..end, Box::new(callback));
345 }
346
347 /// Gain read-only access to the bytes of a [mapped] [`Buffer`].
348 ///
349 /// Return a [`BufferView`] referring to the buffer range represented by
350 /// `self`. See the documentation for [`BufferView`] for details.
351 ///
352 /// # Panics
353 ///
354 /// - This panics if the buffer to which `self` refers is not currently
355 /// [mapped].
356 ///
357 /// - If you try to create overlapping views of a buffer, mutable or
358 /// otherwise, `get_mapped_range` will panic.
359 ///
360 /// [mapped]: Buffer#mapping-buffers
361 pub fn get_mapped_range(&self) -> BufferView<'a> {
362 let end = self.buffer.map_context.lock().add(self.offset, self.size);
363 let range = self.buffer.inner.get_mapped_range(self.offset..end);
364 BufferView {
365 slice: *self,
366 inner: range,
367 }
368 }
369
370 /// Synchronously and immediately map a buffer for reading. If the buffer is not immediately mappable
371 /// through [`BufferDescriptor::mapped_at_creation`] or [`BufferSlice::map_async`], will fail.
372 ///
373 /// This is useful when targeting WebGPU and you want to pass mapped data directly to js.
374 /// Unlike `get_mapped_range` which unconditionally copies mapped data into the wasm heap,
375 /// this function directly hands you the ArrayBuffer that we mapped the data into in js.
376 ///
377 /// This is only available on WebGPU, on any other backends this will return `None`.
378 #[cfg(webgpu)]
379 pub fn get_mapped_range_as_array_buffer(&self) -> Option<js_sys::ArrayBuffer> {
380 let end = self.buffer.map_context.lock().add(self.offset, self.size);
381
382 self.buffer
383 .inner
384 .get_mapped_range_as_array_buffer(self.offset..end)
385 }
386
387 /// Gain write access to the bytes of a [mapped] [`Buffer`].
388 ///
389 /// Return a [`BufferViewMut`] referring to the buffer range represented by
390 /// `self`. See the documentation for [`BufferViewMut`] for more details.
391 ///
392 /// # Panics
393 ///
394 /// - This panics if the buffer to which `self` refers is not currently
395 /// [mapped].
396 ///
397 /// - If you try to create overlapping views of a buffer, mutable or
398 /// otherwise, `get_mapped_range_mut` will panic.
399 ///
400 /// [mapped]: Buffer#mapping-buffers
401 pub fn get_mapped_range_mut(&self) -> BufferViewMut<'a> {
402 let end = self.buffer.map_context.lock().add(self.offset, self.size);
403 let range = self.buffer.inner.get_mapped_range(self.offset..end);
404 BufferViewMut {
405 slice: *self,
406 inner: range,
407 readable: self.buffer.usage.contains(BufferUsages::MAP_READ),
408 }
409 }
410}
411
412/// The mapped portion of a buffer, if any, and its outstanding views.
413///
414/// This ensures that views fall within the mapped range and don't overlap, and
415/// also takes care of turning `Option<BufferSize>` sizes into actual buffer
416/// offsets.
417#[derive(Debug)]
418pub(crate) struct MapContext {
419 /// The overall size of the buffer.
420 ///
421 /// This is just a convenient copy of [`Buffer::size`].
422 pub(crate) total_size: BufferAddress,
423
424 /// The range of the buffer that is mapped.
425 ///
426 /// This is `0..0` if the buffer is not mapped. This becomes non-empty when
427 /// the buffer is mapped at creation time, and when you call `map_async` on
428 /// some [`BufferSlice`] (so technically, it indicates the portion that is
429 /// *or has been requested to be* mapped.)
430 ///
431 /// All [`BufferView`]s and [`BufferViewMut`]s must fall within this range.
432 pub(crate) initial_range: Range<BufferAddress>,
433
434 /// The ranges covered by all outstanding [`BufferView`]s and
435 /// [`BufferViewMut`]s. These are non-overlapping, and are all contained
436 /// within `initial_range`.
437 sub_ranges: Vec<Range<BufferAddress>>,
438}
439
440impl MapContext {
441 pub(crate) fn new(total_size: BufferAddress) -> Self {
442 Self {
443 total_size,
444 initial_range: 0..0,
445 sub_ranges: Vec::new(),
446 }
447 }
448
449 /// Record that the buffer is no longer mapped.
450 fn reset(&mut self) {
451 self.initial_range = 0..0;
452
453 assert!(
454 self.sub_ranges.is_empty(),
455 "You cannot unmap a buffer that still has accessible mapped views"
456 );
457 }
458
459 /// Record that the `size` bytes of the buffer at `offset` are now viewed.
460 ///
461 /// Return the byte offset within the buffer of the end of the viewed range.
462 ///
463 /// # Panics
464 ///
465 /// This panics if the given range overlaps with any existing range.
466 fn add(&mut self, offset: BufferAddress, size: Option<BufferSize>) -> BufferAddress {
467 let end = match size {
468 Some(s) => offset + s.get(),
469 None => self.initial_range.end,
470 };
471 assert!(self.initial_range.start <= offset && end <= self.initial_range.end);
472 // This check is essential for avoiding undefined behavior: it is the
473 // only thing that ensures that `&mut` references to the buffer's
474 // contents don't alias anything else.
475 for sub in self.sub_ranges.iter() {
476 assert!(
477 end <= sub.start || offset >= sub.end,
478 "Intersecting map range with {sub:?}"
479 );
480 }
481 self.sub_ranges.push(offset..end);
482 end
483 }
484
485 /// Record that the `size` bytes of the buffer at `offset` are no longer viewed.
486 ///
487 /// # Panics
488 ///
489 /// This panics if the given range does not exactly match one previously
490 /// passed to [`add`].
491 ///
492 /// [`add]`: MapContext::add
493 fn remove(&mut self, offset: BufferAddress, size: Option<BufferSize>) {
494 let end = match size {
495 Some(s) => offset + s.get(),
496 None => self.initial_range.end,
497 };
498
499 let index = self
500 .sub_ranges
501 .iter()
502 .position(|r| *r == (offset..end))
503 .expect("unable to remove range from map context");
504 self.sub_ranges.swap_remove(index);
505 }
506}
507
508/// Describes a [`Buffer`].
509///
510/// For use with [`Device::create_buffer`].
511///
512/// Corresponds to [WebGPU `GPUBufferDescriptor`](
513/// https://gpuweb.github.io/gpuweb/#dictdef-gpubufferdescriptor).
514pub type BufferDescriptor<'a> = wgt::BufferDescriptor<Label<'a>>;
515static_assertions::assert_impl_all!(BufferDescriptor<'_>: Send, Sync);
516
517/// Error occurred when trying to async map a buffer.
518#[derive(Clone, PartialEq, Eq, Debug)]
519pub struct BufferAsyncError;
520static_assertions::assert_impl_all!(BufferAsyncError: Send, Sync);
521
522impl fmt::Display for BufferAsyncError {
523 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
524 write!(f, "Error occurred when trying to async map a buffer")
525 }
526}
527
528impl error::Error for BufferAsyncError {}
529
530/// Type of buffer mapping.
531#[derive(Debug, Clone, Copy, Eq, PartialEq)]
532pub enum MapMode {
533 /// Map only for reading
534 Read,
535 /// Map only for writing
536 Write,
537}
538static_assertions::assert_impl_all!(MapMode: Send, Sync);
539
540/// A read-only view of a mapped buffer's bytes.
541///
542/// To get a `BufferView`, first [map] the buffer, and then
543/// call `buffer.slice(range).get_mapped_range()`.
544///
545/// `BufferView` dereferences to `&[u8]`, so you can use all the usual Rust
546/// slice methods to access the buffer's contents. It also implements
547/// `AsRef<[u8]>`, if that's more convenient.
548///
549/// Before the buffer can be unmapped, all `BufferView`s observing it
550/// must be dropped. Otherwise, the call to [`Buffer::unmap`] will panic.
551///
552/// For example code, see the documentation on [mapping buffers][map].
553///
554/// [map]: Buffer#mapping-buffers
555/// [`map_async`]: BufferSlice::map_async
556#[derive(Debug)]
557pub struct BufferView<'a> {
558 slice: BufferSlice<'a>,
559 inner: dispatch::DispatchBufferMappedRange,
560}
561
562impl std::ops::Deref for BufferView<'_> {
563 type Target = [u8];
564
565 #[inline]
566 fn deref(&self) -> &[u8] {
567 self.inner.slice()
568 }
569}
570
571impl AsRef<[u8]> for BufferView<'_> {
572 #[inline]
573 fn as_ref(&self) -> &[u8] {
574 self.inner.slice()
575 }
576}
577
578/// A write-only view of a mapped buffer's bytes.
579///
580/// To get a `BufferViewMut`, first [map] the buffer, and then
581/// call `buffer.slice(range).get_mapped_range_mut()`.
582///
583/// `BufferViewMut` dereferences to `&mut [u8]`, so you can use all the usual
584/// Rust slice methods to access the buffer's contents. It also implements
585/// `AsMut<[u8]>`, if that's more convenient.
586///
587/// It is possible to read the buffer using this view, but doing so is not
588/// recommended, as it is likely to be slow.
589///
590/// Before the buffer can be unmapped, all `BufferViewMut`s observing it
591/// must be dropped. Otherwise, the call to [`Buffer::unmap`] will panic.
592///
593/// For example code, see the documentation on [mapping buffers][map].
594///
595/// [map]: Buffer#mapping-buffers
596#[derive(Debug)]
597pub struct BufferViewMut<'a> {
598 slice: BufferSlice<'a>,
599 inner: dispatch::DispatchBufferMappedRange,
600 readable: bool,
601}
602
603impl AsMut<[u8]> for BufferViewMut<'_> {
604 #[inline]
605 fn as_mut(&mut self) -> &mut [u8] {
606 self.inner.slice_mut()
607 }
608}
609
610impl Deref for BufferViewMut<'_> {
611 type Target = [u8];
612
613 fn deref(&self) -> &Self::Target {
614 if !self.readable {
615 log::warn!("Reading from a BufferViewMut is slow and not recommended.");
616 }
617
618 self.inner.slice()
619 }
620}
621
622impl DerefMut for BufferViewMut<'_> {
623 fn deref_mut(&mut self) -> &mut Self::Target {
624 self.inner.slice_mut()
625 }
626}
627
628impl Drop for BufferView<'_> {
629 fn drop(&mut self) {
630 self.slice
631 .buffer
632 .map_context
633 .lock()
634 .remove(self.slice.offset, self.slice.size);
635 }
636}
637
638impl Drop for BufferViewMut<'_> {
639 fn drop(&mut self) {
640 self.slice
641 .buffer
642 .map_context
643 .lock()
644 .remove(self.slice.offset, self.slice.size);
645 }
646}
647
648fn check_buffer_bounds(
649 buffer_size: BufferAddress,
650 offset: BufferAddress,
651 size: Option<BufferSize>,
652) {
653 // A slice of length 0 is invalid, so the offset must not be equal to or greater than the buffer size.
654 if offset >= buffer_size {
655 panic!(
656 "slice offset {} is out of range for buffer of size {}",
657 offset, buffer_size
658 );
659 }
660
661 if let Some(size) = size {
662 // Detect integer overflow.
663 let end = offset.checked_add(size.get());
664 if end.map_or(true, |end| end > buffer_size) {
665 panic!(
666 "slice offset {} size {} is out of range for buffer of size {}",
667 offset, size, buffer_size
668 );
669 }
670 }
671}
672
673fn range_to_offset_size<S: RangeBounds<BufferAddress>>(
674 bounds: S,
675) -> (BufferAddress, Option<BufferSize>) {
676 let offset = match bounds.start_bound() {
677 Bound::Included(&bound) => bound,
678 Bound::Excluded(&bound) => bound + 1,
679 Bound::Unbounded => 0,
680 };
681 let size = match bounds.end_bound() {
682 Bound::Included(&bound) => Some(bound + 1 - offset),
683 Bound::Excluded(&bound) => Some(bound - offset),
684 Bound::Unbounded => None,
685 }
686 .map(|size| BufferSize::new(size).expect("Buffer slices can not be empty"));
687
688 (offset, size)
689}
690
691#[cfg(test)]
692mod tests {
693 use super::{check_buffer_bounds, range_to_offset_size, BufferSize};
694
695 #[test]
696 fn range_to_offset_size_works() {
697 assert_eq!(range_to_offset_size(0..2), (0, BufferSize::new(2)));
698 assert_eq!(range_to_offset_size(2..5), (2, BufferSize::new(3)));
699 assert_eq!(range_to_offset_size(..), (0, None));
700 assert_eq!(range_to_offset_size(21..), (21, None));
701 assert_eq!(range_to_offset_size(0..), (0, None));
702 assert_eq!(range_to_offset_size(..21), (0, BufferSize::new(21)));
703 }
704
705 #[test]
706 #[should_panic]
707 fn range_to_offset_size_panics_for_empty_range() {
708 range_to_offset_size(123..123);
709 }
710
711 #[test]
712 #[should_panic]
713 fn range_to_offset_size_panics_for_unbounded_empty_range() {
714 range_to_offset_size(..0);
715 }
716
717 #[test]
718 #[should_panic]
719 fn check_buffer_bounds_panics_for_offset_at_size() {
720 check_buffer_bounds(100, 100, None);
721 }
722
723 #[test]
724 fn check_buffer_bounds_works_for_end_in_range() {
725 check_buffer_bounds(200, 100, BufferSize::new(50));
726 check_buffer_bounds(200, 100, BufferSize::new(100));
727 check_buffer_bounds(u64::MAX, u64::MAX - 100, BufferSize::new(100));
728 check_buffer_bounds(u64::MAX, 0, BufferSize::new(u64::MAX));
729 check_buffer_bounds(u64::MAX, 1, BufferSize::new(u64::MAX - 1));
730 }
731
732 #[test]
733 #[should_panic]
734 fn check_buffer_bounds_panics_for_end_over_size() {
735 check_buffer_bounds(200, 100, BufferSize::new(101));
736 }
737
738 #[test]
739 #[should_panic]
740 fn check_buffer_bounds_panics_for_end_wraparound() {
741 check_buffer_bounds(u64::MAX, 1, BufferSize::new(u64::MAX));
742 }
743}