wgpu_core/device/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
use crate::{
    binding_model,
    hal_api::HalApi,
    hub::Hub,
    id::{BindGroupLayoutId, PipelineLayoutId},
    resource::{Buffer, BufferAccessError, BufferAccessResult, BufferMapOperation},
    snatch::SnatchGuard,
    Label, DOWNLEVEL_ERROR_MESSAGE,
};

use arrayvec::ArrayVec;
use hal::Device as _;
use smallvec::SmallVec;
use std::os::raw::c_char;
use thiserror::Error;
use wgt::{BufferAddress, DeviceLostReason, TextureFormat};

use std::{iter, num::NonZeroU32, ptr};

pub mod any_device;
pub(crate) mod bgl;
pub mod global;
mod life;
pub mod queue;
pub mod resource;
#[cfg(any(feature = "trace", feature = "replay"))]
pub mod trace;
pub use {life::WaitIdleError, resource::Device};

pub const SHADER_STAGE_COUNT: usize = hal::MAX_CONCURRENT_SHADER_STAGES;
// Should be large enough for the largest possible texture row. This
// value is enough for a 16k texture with float4 format.
pub(crate) const ZERO_BUFFER_SIZE: BufferAddress = 512 << 10;

const CLEANUP_WAIT_MS: u32 = 5000;

const IMPLICIT_BIND_GROUP_LAYOUT_ERROR_LABEL: &str = "Implicit BindGroupLayout in the Error State";
const ENTRYPOINT_FAILURE_ERROR: &str = "The given EntryPoint is Invalid";

pub type DeviceDescriptor<'a> = wgt::DeviceDescriptor<Label<'a>>;

#[repr(C)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum HostMap {
    Read,
    Write,
}

#[derive(Clone, Debug, Hash, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub(crate) struct AttachmentData<T> {
    pub colors: ArrayVec<Option<T>, { hal::MAX_COLOR_ATTACHMENTS }>,
    pub resolves: ArrayVec<T, { hal::MAX_COLOR_ATTACHMENTS }>,
    pub depth_stencil: Option<T>,
}
impl<T: PartialEq> Eq for AttachmentData<T> {}
impl<T> AttachmentData<T> {
    pub(crate) fn map<U, F: Fn(&T) -> U>(&self, fun: F) -> AttachmentData<U> {
        AttachmentData {
            colors: self.colors.iter().map(|c| c.as_ref().map(&fun)).collect(),
            resolves: self.resolves.iter().map(&fun).collect(),
            depth_stencil: self.depth_stencil.as_ref().map(&fun),
        }
    }
}

#[derive(Debug, Copy, Clone)]
pub enum RenderPassCompatibilityCheckType {
    RenderPipeline,
    RenderBundle,
}

#[derive(Clone, Debug, Hash, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub(crate) struct RenderPassContext {
    pub attachments: AttachmentData<TextureFormat>,
    pub sample_count: u32,
    pub multiview: Option<NonZeroU32>,
}
#[derive(Clone, Debug, Error)]
#[non_exhaustive]
pub enum RenderPassCompatibilityError {
    #[error(
        "Incompatible color attachments at indices {indices:?}: the RenderPass uses textures with formats {expected:?} but the {ty:?} uses attachments with formats {actual:?}",
    )]
    IncompatibleColorAttachment {
        indices: Vec<usize>,
        expected: Vec<Option<TextureFormat>>,
        actual: Vec<Option<TextureFormat>>,
        ty: RenderPassCompatibilityCheckType,
    },
    #[error(
        "Incompatible depth-stencil attachment format: the RenderPass uses a texture with format {expected:?} but the {ty:?} uses an attachment with format {actual:?}",
    )]
    IncompatibleDepthStencilAttachment {
        expected: Option<TextureFormat>,
        actual: Option<TextureFormat>,
        ty: RenderPassCompatibilityCheckType,
    },
    #[error(
        "Incompatible sample count: the RenderPass uses textures with sample count {expected:?} but the {ty:?} uses attachments with format {actual:?}",
    )]
    IncompatibleSampleCount {
        expected: u32,
        actual: u32,
        ty: RenderPassCompatibilityCheckType,
    },
    #[error("Incompatible multiview setting: the RenderPass uses setting {expected:?} but the {ty:?} uses setting {actual:?}")]
    IncompatibleMultiview {
        expected: Option<NonZeroU32>,
        actual: Option<NonZeroU32>,
        ty: RenderPassCompatibilityCheckType,
    },
}

impl RenderPassContext {
    // Assumes the renderpass only contains one subpass
    pub(crate) fn check_compatible(
        &self,
        other: &Self,
        ty: RenderPassCompatibilityCheckType,
    ) -> Result<(), RenderPassCompatibilityError> {
        if self.attachments.colors != other.attachments.colors {
            let indices = self
                .attachments
                .colors
                .iter()
                .zip(&other.attachments.colors)
                .enumerate()
                .filter_map(|(idx, (left, right))| (left != right).then_some(idx))
                .collect();
            return Err(RenderPassCompatibilityError::IncompatibleColorAttachment {
                indices,
                expected: self.attachments.colors.iter().cloned().collect(),
                actual: other.attachments.colors.iter().cloned().collect(),
                ty,
            });
        }
        if self.attachments.depth_stencil != other.attachments.depth_stencil {
            return Err(
                RenderPassCompatibilityError::IncompatibleDepthStencilAttachment {
                    expected: self.attachments.depth_stencil,
                    actual: other.attachments.depth_stencil,
                    ty,
                },
            );
        }
        if self.sample_count != other.sample_count {
            return Err(RenderPassCompatibilityError::IncompatibleSampleCount {
                expected: self.sample_count,
                actual: other.sample_count,
                ty,
            });
        }
        if self.multiview != other.multiview {
            return Err(RenderPassCompatibilityError::IncompatibleMultiview {
                expected: self.multiview,
                actual: other.multiview,
                ty,
            });
        }
        Ok(())
    }
}

pub type BufferMapPendingClosure = (BufferMapOperation, BufferAccessResult);

#[derive(Default)]
pub struct UserClosures {
    pub mappings: Vec<BufferMapPendingClosure>,
    pub submissions: SmallVec<[queue::SubmittedWorkDoneClosure; 1]>,
    pub device_lost_invocations: SmallVec<[DeviceLostInvocation; 1]>,
}

impl UserClosures {
    fn extend(&mut self, other: Self) {
        self.mappings.extend(other.mappings);
        self.submissions.extend(other.submissions);
        self.device_lost_invocations
            .extend(other.device_lost_invocations);
    }

    fn fire(self) {
        // Note: this logic is specifically moved out of `handle_mapping()` in order to
        // have nothing locked by the time we execute users callback code.

        // Mappings _must_ be fired before submissions, as the spec requires all mapping callbacks that are registered before
        // a on_submitted_work_done callback to be fired before the on_submitted_work_done callback.
        for (mut operation, status) in self.mappings {
            if let Some(callback) = operation.callback.take() {
                callback.call(status);
            }
        }
        for closure in self.submissions {
            closure.call();
        }
        for invocation in self.device_lost_invocations {
            invocation
                .closure
                .call(invocation.reason, invocation.message);
        }
    }
}

#[cfg(send_sync)]
pub type DeviceLostCallback = Box<dyn Fn(DeviceLostReason, String) + Send + 'static>;
#[cfg(not(send_sync))]
pub type DeviceLostCallback = Box<dyn Fn(DeviceLostReason, String) + 'static>;

pub struct DeviceLostClosureRust {
    pub callback: DeviceLostCallback,
    consumed: bool,
}

impl Drop for DeviceLostClosureRust {
    fn drop(&mut self) {
        if !self.consumed {
            panic!("DeviceLostClosureRust must be consumed before it is dropped.");
        }
    }
}

#[repr(C)]
pub struct DeviceLostClosureC {
    pub callback: unsafe extern "C" fn(user_data: *mut u8, reason: u8, message: *const c_char),
    pub user_data: *mut u8,
    consumed: bool,
}

#[cfg(send_sync)]
unsafe impl Send for DeviceLostClosureC {}

impl Drop for DeviceLostClosureC {
    fn drop(&mut self) {
        if !self.consumed {
            panic!("DeviceLostClosureC must be consumed before it is dropped.");
        }
    }
}

pub struct DeviceLostClosure {
    // We wrap this so creating the enum in the C variant can be unsafe,
    // allowing our call function to be safe.
    inner: DeviceLostClosureInner,
}

pub struct DeviceLostInvocation {
    closure: DeviceLostClosure,
    reason: DeviceLostReason,
    message: String,
}

enum DeviceLostClosureInner {
    Rust { inner: DeviceLostClosureRust },
    C { inner: DeviceLostClosureC },
}

impl DeviceLostClosure {
    pub fn from_rust(callback: DeviceLostCallback) -> Self {
        let inner = DeviceLostClosureRust {
            callback,
            consumed: false,
        };
        Self {
            inner: DeviceLostClosureInner::Rust { inner },
        }
    }

    /// # Safety
    ///
    /// - The callback pointer must be valid to call with the provided `user_data`
    ///   pointer.
    ///
    /// - Both pointers must point to `'static` data, as the callback may happen at
    ///   an unspecified time.
    pub unsafe fn from_c(mut closure: DeviceLostClosureC) -> Self {
        // Build an inner with the values from closure, ensuring that
        // inner.consumed is false.
        let inner = DeviceLostClosureC {
            callback: closure.callback,
            user_data: closure.user_data,
            consumed: false,
        };

        // Mark the original closure as consumed, so we can safely drop it.
        closure.consumed = true;

        Self {
            inner: DeviceLostClosureInner::C { inner },
        }
    }

    pub(crate) fn call(self, reason: DeviceLostReason, message: String) {
        match self.inner {
            DeviceLostClosureInner::Rust { mut inner } => {
                inner.consumed = true;

                (inner.callback)(reason, message)
            }
            // SAFETY: the contract of the call to from_c says that this unsafe is sound.
            DeviceLostClosureInner::C { mut inner } => unsafe {
                inner.consumed = true;

                // Ensure message is structured as a null-terminated C string. It only
                // needs to live as long as the callback invocation.
                let message = std::ffi::CString::new(message).unwrap();
                (inner.callback)(inner.user_data, reason as u8, message.as_ptr())
            },
        }
    }
}

fn map_buffer<A: HalApi>(
    raw: &A::Device,
    buffer: &Buffer<A>,
    offset: BufferAddress,
    size: BufferAddress,
    kind: HostMap,
    snatch_guard: &SnatchGuard,
) -> Result<ptr::NonNull<u8>, BufferAccessError> {
    let raw_buffer = buffer
        .raw(snatch_guard)
        .ok_or(BufferAccessError::Destroyed)?;
    let mapping = unsafe {
        raw.map_buffer(raw_buffer, offset..offset + size)
            .map_err(DeviceError::from)?
    };

    *buffer.sync_mapped_writes.lock() = match kind {
        HostMap::Read if !mapping.is_coherent => unsafe {
            raw.invalidate_mapped_ranges(raw_buffer, iter::once(offset..offset + size));
            None
        },
        HostMap::Write if !mapping.is_coherent => Some(offset..offset + size),
        _ => None,
    };

    assert_eq!(offset % wgt::COPY_BUFFER_ALIGNMENT, 0);
    assert_eq!(size % wgt::COPY_BUFFER_ALIGNMENT, 0);
    // Zero out uninitialized parts of the mapping. (Spec dictates all resources
    // behave as if they were initialized with zero)
    //
    // If this is a read mapping, ideally we would use a `clear_buffer` command
    // before reading the data from GPU (i.e. `invalidate_range`). However, this
    // would require us to kick off and wait for a command buffer or piggy back
    // on an existing one (the later is likely the only worthwhile option). As
    // reading uninitialized memory isn't a particular important path to
    // support, we instead just initialize the memory here and make sure it is
    // GPU visible, so this happens at max only once for every buffer region.
    //
    // If this is a write mapping zeroing out the memory here is the only
    // reasonable way as all data is pushed to GPU anyways.

    // No need to flush if it is flushed later anyways.
    let zero_init_needs_flush_now =
        mapping.is_coherent && buffer.sync_mapped_writes.lock().is_none();
    let mapped = unsafe { std::slice::from_raw_parts_mut(mapping.ptr.as_ptr(), size as usize) };

    for uninitialized in buffer
        .initialization_status
        .write()
        .drain(offset..(size + offset))
    {
        // The mapping's pointer is already offset, however we track the
        // uninitialized range relative to the buffer's start.
        let fill_range =
            (uninitialized.start - offset) as usize..(uninitialized.end - offset) as usize;
        mapped[fill_range].fill(0);

        if zero_init_needs_flush_now {
            unsafe { raw.flush_mapped_ranges(raw_buffer, iter::once(uninitialized)) };
        }
    }

    Ok(mapping.ptr)
}

#[derive(Clone, Debug, Error)]
#[error("Device is invalid")]
pub struct InvalidDevice;

#[derive(Clone, Debug, Error)]
#[non_exhaustive]
pub enum DeviceError {
    #[error("Parent device is invalid.")]
    Invalid,
    #[error("Parent device is lost")]
    Lost,
    #[error("Not enough memory left.")]
    OutOfMemory,
    #[error("Creation of a resource failed for a reason other than running out of memory.")]
    ResourceCreationFailed,
    #[error("QueueId is invalid")]
    InvalidQueueId,
    #[error("Attempt to use a resource with a different device from the one that created it")]
    WrongDevice,
}

impl From<hal::DeviceError> for DeviceError {
    fn from(error: hal::DeviceError) -> Self {
        match error {
            hal::DeviceError::Lost => DeviceError::Lost,
            hal::DeviceError::OutOfMemory => DeviceError::OutOfMemory,
            hal::DeviceError::ResourceCreationFailed => DeviceError::ResourceCreationFailed,
        }
    }
}

#[derive(Clone, Debug, Error)]
#[error("Features {0:?} are required but not enabled on the device")]
pub struct MissingFeatures(pub wgt::Features);

#[derive(Clone, Debug, Error)]
#[error(
    "Downlevel flags {0:?} are required but not supported on the device.\n{}",
    DOWNLEVEL_ERROR_MESSAGE
)]
pub struct MissingDownlevelFlags(pub wgt::DownlevelFlags);

#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct ImplicitPipelineContext {
    pub root_id: PipelineLayoutId,
    pub group_ids: ArrayVec<BindGroupLayoutId, { hal::MAX_BIND_GROUPS }>,
}

pub struct ImplicitPipelineIds<'a> {
    pub root_id: Option<PipelineLayoutId>,
    pub group_ids: &'a [Option<BindGroupLayoutId>],
}

impl ImplicitPipelineIds<'_> {
    fn prepare<A: HalApi>(self, hub: &Hub<A>) -> ImplicitPipelineContext {
        ImplicitPipelineContext {
            root_id: hub.pipeline_layouts.prepare(self.root_id).into_id(),
            group_ids: self
                .group_ids
                .iter()
                .map(|id_in| hub.bind_group_layouts.prepare(*id_in).into_id())
                .collect(),
        }
    }
}