zerocopy/
byteorder.rs

1// Copyright 2019 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9//! Byte order-aware numeric primitives.
10//!
11//! This module contains equivalents of the native multi-byte integer types with
12//! no alignment requirement and supporting byte order conversions.
13//!
14//! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - and
15//! floating point type - `f32` and `f64` - an equivalent type is defined by
16//! this module - [`U16`], [`I16`], [`U32`], [`F64`], etc. Unlike their native
17//! counterparts, these types have alignment 1, and take a type parameter
18//! specifying the byte order in which the bytes are stored in memory. Each type
19//! implements the [`FromBytes`], [`AsBytes`], and [`Unaligned`] traits.
20//!
21//! These two properties, taken together, make these types useful for defining
22//! data structures whose memory layout matches a wire format such as that of a
23//! network protocol or a file format. Such formats often have multi-byte values
24//! at offsets that do not respect the alignment requirements of the equivalent
25//! native types, and stored in a byte order not necessarily the same as that of
26//! the target platform.
27//!
28//! Type aliases are provided for common byte orders in the [`big_endian`],
29//! [`little_endian`], [`network_endian`], and [`native_endian`] submodules.
30//!
31//! # Example
32//!
33//! One use of these types is for representing network packet formats, such as
34//! UDP:
35//!
36//! ```rust,edition2021
37//! # #[cfg(feature = "derive")] { // This example uses derives, and won't compile without them
38//! use zerocopy::{AsBytes, ByteSlice, FromBytes, FromZeroes, Ref, Unaligned};
39//! use zerocopy::byteorder::network_endian::U16;
40//!
41//! #[derive(FromZeroes, FromBytes, AsBytes, Unaligned)]
42//! #[repr(C)]
43//! struct UdpHeader {
44//!     src_port: U16,
45//!     dst_port: U16,
46//!     length: U16,
47//!     checksum: U16,
48//! }
49//!
50//! struct UdpPacket<B: ByteSlice> {
51//!     header: Ref<B, UdpHeader>,
52//!     body: B,
53//! }
54//!
55//! impl<B: ByteSlice> UdpPacket<B> {
56//!     fn parse(bytes: B) -> Option<UdpPacket<B>> {
57//!         let (header, body) = Ref::new_from_prefix(bytes)?;
58//!         Some(UdpPacket { header, body })
59//!     }
60//!
61//!     fn src_port(&self) -> u16 {
62//!         self.header.src_port.get()
63//!     }
64//!
65//!     // more getters...
66//! }
67//! # }
68//! ```
69
70use core::{
71    convert::{TryFrom, TryInto},
72    fmt::{self, Binary, Debug, Display, Formatter, LowerHex, Octal, UpperHex},
73    marker::PhantomData,
74    num::TryFromIntError,
75};
76
77// We don't reexport `WriteBytesExt` or `ReadBytesExt` because those are only
78// available with the `std` feature enabled, and zerocopy is `no_std` by
79// default.
80pub use ::byteorder::{BigEndian, ByteOrder, LittleEndian, NativeEndian, NetworkEndian, BE, LE};
81
82use super::*;
83
84macro_rules! impl_fmt_trait {
85    ($name:ident, $native:ident, $trait:ident) => {
86        impl<O: ByteOrder> $trait for $name<O> {
87            #[inline(always)]
88            fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
89                $trait::fmt(&self.get(), f)
90            }
91        }
92    };
93}
94
95macro_rules! impl_fmt_traits {
96    ($name:ident, $native:ident, "floating point number") => {
97        impl_fmt_trait!($name, $native, Display);
98    };
99    ($name:ident, $native:ident, "unsigned integer") => {
100        impl_fmt_traits!($name, $native, @all_types);
101    };
102    ($name:ident, $native:ident, "signed integer") => {
103        impl_fmt_traits!($name, $native, @all_types);
104    };
105    ($name:ident, $native:ident, @all_types) => {
106        impl_fmt_trait!($name, $native, Display);
107        impl_fmt_trait!($name, $native, Octal);
108        impl_fmt_trait!($name, $native, LowerHex);
109        impl_fmt_trait!($name, $native, UpperHex);
110        impl_fmt_trait!($name, $native, Binary);
111    };
112}
113
114macro_rules! impl_ops_traits {
115    ($name:ident, $native:ident, "floating point number") => {
116        impl_ops_traits!($name, $native, @all_types);
117        impl_ops_traits!($name, $native, @signed_integer_floating_point);
118    };
119    ($name:ident, $native:ident, "unsigned integer") => {
120        impl_ops_traits!($name, $native, @signed_unsigned_integer);
121        impl_ops_traits!($name, $native, @all_types);
122    };
123    ($name:ident, $native:ident, "signed integer") => {
124        impl_ops_traits!($name, $native, @signed_unsigned_integer);
125        impl_ops_traits!($name, $native, @signed_integer_floating_point);
126        impl_ops_traits!($name, $native, @all_types);
127    };
128    ($name:ident, $native:ident, @signed_unsigned_integer) => {
129        impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign);
130        impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign);
131        impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign);
132        impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign);
133        impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign);
134
135        impl<O> core::ops::Not for $name<O> {
136            type Output = $name<O>;
137
138            #[inline(always)]
139            fn not(self) -> $name<O> {
140                 let self_native = $native::from_ne_bytes(self.0);
141                 $name((!self_native).to_ne_bytes(), PhantomData)
142            }
143        }
144    };
145    ($name:ident, $native:ident, @signed_integer_floating_point) => {
146        impl<O: ByteOrder> core::ops::Neg for $name<O> {
147            type Output = $name<O>;
148
149            #[inline(always)]
150            fn neg(self) -> $name<O> {
151                let self_native: $native = self.get();
152                #[allow(clippy::arithmetic_side_effects)]
153                $name::<O>::new(-self_native)
154            }
155        }
156    };
157    ($name:ident, $native:ident, @all_types) => {
158        impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign);
159        impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign);
160        impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign);
161        impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign);
162        impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign);
163    };
164    (@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => {
165        impl<O: ByteOrder> core::ops::$trait for $name<O> {
166            type Output = $name<O>;
167
168            #[inline(always)]
169            fn $method(self, rhs: $name<O>) -> $name<O> {
170                let self_native: $native = self.get();
171                let rhs_native: $native = rhs.get();
172                let result_native = core::ops::$trait::$method(self_native, rhs_native);
173                $name::<O>::new(result_native)
174            }
175        }
176
177        impl<O: ByteOrder> core::ops::$trait_assign for $name<O> {
178            #[inline(always)]
179            fn $method_assign(&mut self, rhs: $name<O>) {
180                *self = core::ops::$trait::$method(*self, rhs);
181            }
182        }
183    };
184    // Implement traits in terms of the same trait on the native type, but
185    // without performing a byte order swap. This only works for bitwise
186    // operations like `&`, `|`, etc.
187    (@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => {
188        impl<O: ByteOrder> core::ops::$trait for $name<O> {
189            type Output = $name<O>;
190
191            #[inline(always)]
192            fn $method(self, rhs: $name<O>) -> $name<O> {
193                let self_native = $native::from_ne_bytes(self.0);
194                let rhs_native = $native::from_ne_bytes(rhs.0);
195                let result_native = core::ops::$trait::$method(self_native, rhs_native);
196                $name(result_native.to_ne_bytes(), PhantomData)
197            }
198        }
199
200        impl<O: ByteOrder> core::ops::$trait_assign for $name<O> {
201            #[inline(always)]
202            fn $method_assign(&mut self, rhs: $name<O>) {
203                *self = core::ops::$trait::$method(*self, rhs);
204            }
205        }
206    };
207}
208
209macro_rules! doc_comment {
210    ($x:expr, $($tt:tt)*) => {
211        #[doc = $x]
212        $($tt)*
213    };
214}
215
216macro_rules! define_max_value_constant {
217    ($name:ident, $bytes:expr, "unsigned integer") => {
218        /// The maximum value.
219        ///
220        /// This constant should be preferred to constructing a new value using
221        /// `new`, as `new` may perform an endianness swap depending on the
222        /// endianness `O` and the endianness of the platform.
223        pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData);
224    };
225    // We don't provide maximum and minimum value constants for signed values
226    // and floats because there's no way to do it generically - it would require
227    // a different value depending on the value of the `ByteOrder` type
228    // parameter. Currently, one workaround would be to provide implementations
229    // for concrete implementations of that trait. In the long term, if we are
230    // ever able to make the `new` constructor a const fn, we could use that
231    // instead.
232    ($name:ident, $bytes:expr, "signed integer") => {};
233    ($name:ident, $bytes:expr, "floating point number") => {};
234}
235
236macro_rules! define_type {
237    ($article:ident,
238        $name:ident,
239        $native:ident,
240        $bits:expr,
241        $bytes:expr,
242        $read_method:ident,
243        $write_method:ident,
244        $number_kind:tt,
245        [$($larger_native:ty),*],
246        [$($larger_native_try:ty),*],
247        [$($larger_byteorder:ident),*],
248        [$($larger_byteorder_try:ident),*]) => {
249        doc_comment! {
250            concat!("A ", stringify!($bits), "-bit ", $number_kind,
251            " stored in a given byte order.
252
253`", stringify!($name), "` is like the native `", stringify!($native), "` type with
254two major differences: First, it has no alignment requirement (its alignment is 1).
255Second, the endianness of its memory layout is given by the type parameter `O`,
256which can be any type which implements [`ByteOrder`]. In particular, this refers
257to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`].
258
259", stringify!($article), " `", stringify!($name), "` can be constructed using
260the [`new`] method, and its contained value can be obtained as a native
261`",stringify!($native), "` using the [`get`] method, or updated in place with
262the [`set`] method. In all cases, if the endianness `O` is not the same as the
263endianness of the current platform, an endianness swap will be performed in
264order to uphold the invariants that a) the layout of `", stringify!($name), "`
265has endianness `O` and that, b) the layout of `", stringify!($native), "` has
266the platform's native endianness.
267
268`", stringify!($name), "` implements [`FromBytes`], [`AsBytes`], and [`Unaligned`],
269making it useful for parsing and serialization. See the module documentation for an
270example of how it can be used for parsing UDP packets.
271
272[`new`]: crate::byteorder::", stringify!($name), "::new
273[`get`]: crate::byteorder::", stringify!($name), "::get
274[`set`]: crate::byteorder::", stringify!($name), "::set
275[`FromBytes`]: crate::FromBytes
276[`AsBytes`]: crate::AsBytes
277[`Unaligned`]: crate::Unaligned"),
278            #[derive(Copy, Clone, Eq, PartialEq, Hash)]
279            #[cfg_attr(any(feature = "derive", test), derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned))]
280            #[repr(transparent)]
281            pub struct $name<O>([u8; $bytes], PhantomData<O>);
282        }
283
284        #[cfg(not(any(feature = "derive", test)))]
285        impl_known_layout!(O => $name<O>);
286
287        safety_comment! {
288            /// SAFETY:
289            /// `$name<O>` is `repr(transparent)`, and so it has the same layout
290            /// as its only non-zero field, which is a `u8` array. `u8` arrays
291            /// are `FromZeroes`, `FromBytes`, `AsBytes`, and `Unaligned`.
292            impl_or_verify!(O => FromZeroes for $name<O>);
293            impl_or_verify!(O => FromBytes for $name<O>);
294            impl_or_verify!(O => AsBytes for $name<O>);
295            impl_or_verify!(O => Unaligned for $name<O>);
296        }
297
298        impl<O> Default for $name<O> {
299            #[inline(always)]
300            fn default() -> $name<O> {
301                $name::ZERO
302            }
303        }
304
305        impl<O> $name<O> {
306            /// The value zero.
307            ///
308            /// This constant should be preferred to constructing a new value
309            /// using `new`, as `new` may perform an endianness swap depending
310            /// on the endianness and platform.
311            pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData);
312
313            define_max_value_constant!($name, $bytes, $number_kind);
314
315            /// Constructs a new value from bytes which are already in the
316            /// endianness `O`.
317            #[inline(always)]
318            pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> {
319                $name(bytes, PhantomData)
320            }
321        }
322
323        impl<O: ByteOrder> $name<O> {
324            // TODO(joshlf): Make these const fns if the `ByteOrder` methods
325            // ever become const fns.
326
327            /// Constructs a new value, possibly performing an endianness swap
328            /// to guarantee that the returned value has endianness `O`.
329            #[inline(always)]
330            pub fn new(n: $native) -> $name<O> {
331                let mut out = $name::default();
332                O::$write_method(&mut out.0[..], n);
333                out
334            }
335
336            /// Returns the value as a primitive type, possibly performing an
337            /// endianness swap to guarantee that the return value has the
338            /// endianness of the native platform.
339            #[inline(always)]
340            pub fn get(self) -> $native {
341                O::$read_method(&self.0[..])
342            }
343
344            /// Updates the value in place as a primitive type, possibly
345            /// performing an endianness swap to guarantee that the stored value
346            /// has the endianness `O`.
347            #[inline(always)]
348            pub fn set(&mut self, n: $native) {
349                O::$write_method(&mut self.0[..], n);
350            }
351        }
352
353        // The reasoning behind which traits to implement here is to only
354        // implement traits which won't cause inference issues. Notably,
355        // comparison traits like PartialEq and PartialOrd tend to cause
356        // inference issues.
357
358        impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] {
359            #[inline(always)]
360            fn from(x: $name<O>) -> [u8; $bytes] {
361                x.0
362            }
363        }
364
365        impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> {
366            #[inline(always)]
367            fn from(bytes: [u8; $bytes]) -> $name<O> {
368                $name(bytes, PhantomData)
369            }
370        }
371
372        impl<O: ByteOrder> From<$name<O>> for $native {
373            #[inline(always)]
374            fn from(x: $name<O>) -> $native {
375                x.get()
376            }
377        }
378
379        impl<O: ByteOrder> From<$native> for $name<O> {
380            #[inline(always)]
381            fn from(x: $native) -> $name<O> {
382                $name::new(x)
383            }
384        }
385
386        $(
387            impl<O: ByteOrder> From<$name<O>> for $larger_native {
388                #[inline(always)]
389                fn from(x: $name<O>) -> $larger_native {
390                    x.get().into()
391                }
392            }
393        )*
394
395        $(
396            impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> {
397                type Error = TryFromIntError;
398                #[inline(always)]
399                fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> {
400                    $native::try_from(x).map($name::new)
401                }
402            }
403        )*
404
405        $(
406            impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> {
407                #[inline(always)]
408                fn from(x: $name<O>) -> $larger_byteorder<P> {
409                    $larger_byteorder::new(x.get().into())
410                }
411            }
412        )*
413
414        $(
415            impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> {
416                type Error = TryFromIntError;
417                #[inline(always)]
418                fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> {
419                    x.get().try_into().map($name::new)
420                }
421            }
422        )*
423
424        impl<O: ByteOrder> AsRef<[u8; $bytes]> for $name<O> {
425            #[inline(always)]
426            fn as_ref(&self) -> &[u8; $bytes] {
427                &self.0
428            }
429        }
430
431        impl<O: ByteOrder> AsMut<[u8; $bytes]> for $name<O> {
432            #[inline(always)]
433            fn as_mut(&mut self) -> &mut [u8; $bytes] {
434                &mut self.0
435            }
436        }
437
438        impl<O: ByteOrder> PartialEq<$name<O>> for [u8; $bytes] {
439            #[inline(always)]
440            fn eq(&self, other: &$name<O>) -> bool {
441                self.eq(&other.0)
442            }
443        }
444
445        impl<O: ByteOrder> PartialEq<[u8; $bytes]> for $name<O> {
446            #[inline(always)]
447            fn eq(&self, other: &[u8; $bytes]) -> bool {
448                self.0.eq(other)
449            }
450        }
451
452        impl_fmt_traits!($name, $native, $number_kind);
453        impl_ops_traits!($name, $native, $number_kind);
454
455        impl<O: ByteOrder> Debug for $name<O> {
456            #[inline]
457            fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
458                // This results in a format like "U16(42)".
459                f.debug_tuple(stringify!($name)).field(&self.get()).finish()
460            }
461        }
462    };
463}
464
465define_type!(
466    A,
467    U16,
468    u16,
469    16,
470    2,
471    read_u16,
472    write_u16,
473    "unsigned integer",
474    [u32, u64, u128, usize],
475    [u32, u64, u128, usize],
476    [U32, U64, U128],
477    [U32, U64, U128]
478);
479define_type!(
480    A,
481    U32,
482    u32,
483    32,
484    4,
485    read_u32,
486    write_u32,
487    "unsigned integer",
488    [u64, u128],
489    [u64, u128],
490    [U64, U128],
491    [U64, U128]
492);
493define_type!(
494    A,
495    U64,
496    u64,
497    64,
498    8,
499    read_u64,
500    write_u64,
501    "unsigned integer",
502    [u128],
503    [u128],
504    [U128],
505    [U128]
506);
507define_type!(A, U128, u128, 128, 16, read_u128, write_u128, "unsigned integer", [], [], [], []);
508define_type!(
509    An,
510    I16,
511    i16,
512    16,
513    2,
514    read_i16,
515    write_i16,
516    "signed integer",
517    [i32, i64, i128, isize],
518    [i32, i64, i128, isize],
519    [I32, I64, I128],
520    [I32, I64, I128]
521);
522define_type!(
523    An,
524    I32,
525    i32,
526    32,
527    4,
528    read_i32,
529    write_i32,
530    "signed integer",
531    [i64, i128],
532    [i64, i128],
533    [I64, I128],
534    [I64, I128]
535);
536define_type!(
537    An,
538    I64,
539    i64,
540    64,
541    8,
542    read_i64,
543    write_i64,
544    "signed integer",
545    [i128],
546    [i128],
547    [I128],
548    [I128]
549);
550define_type!(An, I128, i128, 128, 16, read_i128, write_i128, "signed integer", [], [], [], []);
551define_type!(
552    An,
553    F32,
554    f32,
555    32,
556    4,
557    read_f32,
558    write_f32,
559    "floating point number",
560    [f64],
561    [],
562    [F64],
563    []
564);
565define_type!(An, F64, f64, 64, 8, read_f64, write_f64, "floating point number", [], [], [], []);
566
567macro_rules! module {
568    ($name:ident, $trait:ident, $endianness_str:expr) => {
569        /// Numeric primitives stored in
570        #[doc = $endianness_str]
571        /// byte order.
572        pub mod $name {
573            use byteorder::$trait;
574
575            module!(@ty U16,  $trait, "16-bit unsigned integer", $endianness_str);
576            module!(@ty U32,  $trait, "32-bit unsigned integer", $endianness_str);
577            module!(@ty U64,  $trait, "64-bit unsigned integer", $endianness_str);
578            module!(@ty U128, $trait, "128-bit unsigned integer", $endianness_str);
579            module!(@ty I16,  $trait, "16-bit signed integer", $endianness_str);
580            module!(@ty I32,  $trait, "32-bit signed integer", $endianness_str);
581            module!(@ty I64,  $trait, "64-bit signed integer", $endianness_str);
582            module!(@ty I128, $trait, "128-bit signed integer", $endianness_str);
583            module!(@ty F32,  $trait, "32-bit floating point number", $endianness_str);
584            module!(@ty F64,  $trait, "64-bit floating point number", $endianness_str);
585        }
586    };
587    (@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => {
588        /// A
589        #[doc = $desc_str]
590        /// stored in
591        #[doc = $endianness_str]
592        /// byte order.
593        pub type $ty = crate::byteorder::$ty<$trait>;
594    };
595}
596
597module!(big_endian, BigEndian, "big-endian");
598module!(little_endian, LittleEndian, "little-endian");
599module!(network_endian, NetworkEndian, "network-endian");
600module!(native_endian, NativeEndian, "native-endian");
601
602#[cfg(any(test, kani))]
603mod tests {
604    use ::byteorder::NativeEndian;
605
606    use {
607        super::*,
608        crate::{AsBytes, FromBytes, Unaligned},
609    };
610
611    #[cfg(not(kani))]
612    mod compatibility {
613        pub(super) use rand::{
614            distributions::{Distribution, Standard},
615            rngs::SmallRng,
616            Rng, SeedableRng,
617        };
618
619        pub(crate) trait Arbitrary {}
620
621        impl<T> Arbitrary for T {}
622    }
623
624    #[cfg(kani)]
625    mod compatibility {
626        pub(crate) use kani::Arbitrary;
627
628        pub(crate) struct SmallRng;
629
630        impl SmallRng {
631            pub(crate) fn seed_from_u64(_state: u64) -> Self {
632                Self
633            }
634        }
635
636        pub(crate) trait Rng {
637            fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T
638            where
639                T: Arbitrary,
640            {
641                kani::any()
642            }
643        }
644
645        impl Rng for SmallRng {}
646
647        pub(crate) trait Distribution<T> {}
648        impl<T, U> Distribution<T> for U {}
649
650        pub(crate) struct Standard;
651    }
652
653    use compatibility::*;
654
655    // A native integer type (u16, i32, etc).
656    #[cfg_attr(kani, allow(dead_code))]
657    trait Native: Arbitrary + FromBytes + AsBytes + Copy + PartialEq + Debug {
658        const ZERO: Self;
659        const MAX_VALUE: Self;
660
661        type Distribution: Distribution<Self>;
662        const DIST: Self::Distribution;
663
664        fn rand<R: Rng>(rng: &mut R) -> Self {
665            rng.sample(Self::DIST)
666        }
667
668        fn checked_add(self, rhs: Self) -> Option<Self>;
669        fn checked_div(self, rhs: Self) -> Option<Self>;
670        fn checked_mul(self, rhs: Self) -> Option<Self>;
671        fn checked_rem(self, rhs: Self) -> Option<Self>;
672        fn checked_sub(self, rhs: Self) -> Option<Self>;
673        fn checked_shl(self, rhs: Self) -> Option<Self>;
674        fn checked_shr(self, rhs: Self) -> Option<Self>;
675
676        fn is_nan(self) -> bool;
677
678        /// For `f32` and `f64`, NaN values are not considered equal to
679        /// themselves. This method is like `assert_eq!`, but it treats NaN
680        /// values as equal.
681        fn assert_eq_or_nan(self, other: Self) {
682            let slf = (!self.is_nan()).then(|| self);
683            let other = (!other.is_nan()).then(|| other);
684            assert_eq!(slf, other);
685        }
686    }
687
688    trait ByteArray:
689        FromBytes + AsBytes + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq
690    {
691        /// Invert the order of the bytes in the array.
692        fn invert(self) -> Self;
693    }
694
695    trait ByteOrderType: FromBytes + AsBytes + Unaligned + Copy + Eq + Debug {
696        type Native: Native;
697        type ByteArray: ByteArray;
698
699        const ZERO: Self;
700
701        fn new(native: Self::Native) -> Self;
702        fn get(self) -> Self::Native;
703        fn set(&mut self, native: Self::Native);
704        fn from_bytes(bytes: Self::ByteArray) -> Self;
705        fn into_bytes(self) -> Self::ByteArray;
706
707        /// For `f32` and `f64`, NaN values are not considered equal to
708        /// themselves. This method is like `assert_eq!`, but it treats NaN
709        /// values as equal.
710        fn assert_eq_or_nan(self, other: Self) {
711            let slf = (!self.get().is_nan()).then(|| self);
712            let other = (!other.get().is_nan()).then(|| other);
713            assert_eq!(slf, other);
714        }
715    }
716
717    trait ByteOrderTypeUnsigned: ByteOrderType {
718        const MAX_VALUE: Self;
719    }
720
721    macro_rules! impl_byte_array {
722        ($bytes:expr) => {
723            impl ByteArray for [u8; $bytes] {
724                fn invert(mut self) -> [u8; $bytes] {
725                    self.reverse();
726                    self
727                }
728            }
729        };
730    }
731
732    impl_byte_array!(2);
733    impl_byte_array!(4);
734    impl_byte_array!(8);
735    impl_byte_array!(16);
736
737    macro_rules! impl_byte_order_type_unsigned {
738        ($name:ident, unsigned) => {
739            impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> {
740                const MAX_VALUE: $name<O> = $name::MAX_VALUE;
741            }
742        };
743        ($name:ident, signed) => {};
744    }
745
746    macro_rules! impl_traits {
747        ($name:ident, $native:ident, $bytes:expr, $sign:ident $(, @$float:ident)?) => {
748            impl Native for $native {
749                // For some types, `0 as $native` is required (for example, when
750                // `$native` is a floating-point type; `0` is an integer), but
751                // for other types, it's a trivial cast. In all cases, Clippy
752                // thinks it's dangerous.
753                #[allow(trivial_numeric_casts, clippy::as_conversions)]
754                const ZERO: $native = 0 as $native;
755                const MAX_VALUE: $native = $native::MAX;
756
757                type Distribution = Standard;
758                const DIST: Standard = Standard;
759
760                impl_traits!(@float_dependent_methods $(@$float)?);
761            }
762
763            impl<O: ByteOrder> ByteOrderType for $name<O> {
764                type Native = $native;
765                type ByteArray = [u8; $bytes];
766
767                const ZERO: $name<O> = $name::ZERO;
768
769                fn new(native: $native) -> $name<O> {
770                    $name::new(native)
771                }
772
773                fn get(self) -> $native {
774                    $name::get(self)
775                }
776
777                fn set(&mut self, native: $native) {
778                    $name::set(self, native)
779                }
780
781                fn from_bytes(bytes: [u8; $bytes]) -> $name<O> {
782                    $name::from(bytes)
783                }
784
785                fn into_bytes(self) -> [u8; $bytes] {
786                    <[u8; $bytes]>::from(self)
787                }
788            }
789
790            impl_byte_order_type_unsigned!($name, $sign);
791        };
792        (@float_dependent_methods) => {
793            fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) }
794            fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) }
795            fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) }
796            fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) }
797            fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) }
798            fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) }
799            fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) }
800            fn is_nan(self) -> bool { false }
801        };
802        (@float_dependent_methods @float) => {
803            fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) }
804            fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) }
805            fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) }
806            fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) }
807            fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) }
808            fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() }
809            fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() }
810            fn is_nan(self) -> bool { self.is_nan() }
811        };
812    }
813
814    impl_traits!(U16, u16, 2, unsigned);
815    impl_traits!(U32, u32, 4, unsigned);
816    impl_traits!(U64, u64, 8, unsigned);
817    impl_traits!(U128, u128, 16, unsigned);
818    impl_traits!(I16, i16, 2, signed);
819    impl_traits!(I32, i32, 4, signed);
820    impl_traits!(I64, i64, 8, signed);
821    impl_traits!(I128, i128, 16, signed);
822    impl_traits!(F32, f32, 4, signed, @float);
823    impl_traits!(F64, f64, 8, signed, @float);
824
825    macro_rules! call_for_unsigned_types {
826        ($fn:ident, $byteorder:ident) => {
827            $fn::<U16<$byteorder>>();
828            $fn::<U32<$byteorder>>();
829            $fn::<U64<$byteorder>>();
830            $fn::<U128<$byteorder>>();
831        };
832    }
833
834    macro_rules! call_for_signed_types {
835        ($fn:ident, $byteorder:ident) => {
836            $fn::<I16<$byteorder>>();
837            $fn::<I32<$byteorder>>();
838            $fn::<I64<$byteorder>>();
839            $fn::<I128<$byteorder>>();
840        };
841    }
842
843    macro_rules! call_for_float_types {
844        ($fn:ident, $byteorder:ident) => {
845            $fn::<F32<$byteorder>>();
846            $fn::<F64<$byteorder>>();
847        };
848    }
849
850    macro_rules! call_for_all_types {
851        ($fn:ident, $byteorder:ident) => {
852            call_for_unsigned_types!($fn, $byteorder);
853            call_for_signed_types!($fn, $byteorder);
854            call_for_float_types!($fn, $byteorder);
855        };
856    }
857
858    #[cfg(target_endian = "big")]
859    type NonNativeEndian = LittleEndian;
860    #[cfg(target_endian = "little")]
861    type NonNativeEndian = BigEndian;
862
863    // We use a `u64` seed so that we can use `SeedableRng::seed_from_u64`.
864    // `SmallRng`'s `SeedableRng::Seed` differs by platform, so if we wanted to
865    // call `SeedableRng::from_seed`, which takes a `Seed`, we would need
866    // conditional compilation by `target_pointer_width`.
867    const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F;
868
869    const RAND_ITERS: usize = if cfg!(any(miri, kani)) {
870        // The tests below which use this constant used to take a very long time
871        // on Miri, which slows down local development and CI jobs. We're not
872        // using Miri to check for the correctness of our code, but rather its
873        // soundness, and at least in the context of these particular tests, a
874        // single loop iteration is just as good for surfacing UB as multiple
875        // iterations are.
876        //
877        // As of the writing of this comment, here's one set of measurements:
878        //
879        //   $ # RAND_ITERS == 1
880        //   $ cargo miri test -- -Z unstable-options --report-time endian
881        //   test byteorder::tests::test_native_endian ... ok <0.049s>
882        //   test byteorder::tests::test_non_native_endian ... ok <0.061s>
883        //
884        //   $ # RAND_ITERS == 1024
885        //   $ cargo miri test -- -Z unstable-options --report-time endian
886        //   test byteorder::tests::test_native_endian ... ok <25.716s>
887        //   test byteorder::tests::test_non_native_endian ... ok <38.127s>
888        1
889    } else {
890        1024
891    };
892
893    #[cfg_attr(test, test)]
894    #[cfg_attr(kani, kani::proof)]
895    fn test_zero() {
896        fn test_zero<T: ByteOrderType>() {
897            assert_eq!(T::ZERO.get(), T::Native::ZERO);
898        }
899
900        call_for_all_types!(test_zero, NativeEndian);
901        call_for_all_types!(test_zero, NonNativeEndian);
902    }
903
904    #[cfg_attr(test, test)]
905    #[cfg_attr(kani, kani::proof)]
906    fn test_max_value() {
907        fn test_max_value<T: ByteOrderTypeUnsigned>() {
908            assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE);
909        }
910
911        call_for_unsigned_types!(test_max_value, NativeEndian);
912        call_for_unsigned_types!(test_max_value, NonNativeEndian);
913    }
914
915    #[cfg_attr(test, test)]
916    #[cfg_attr(kani, kani::proof)]
917    fn test_endian() {
918        fn test<T: ByteOrderType>(invert: bool) {
919            let mut r = SmallRng::seed_from_u64(RNG_SEED);
920            for _ in 0..RAND_ITERS {
921                let native = T::Native::rand(&mut r);
922                let mut bytes = T::ByteArray::default();
923                bytes.as_bytes_mut().copy_from_slice(native.as_bytes());
924                if invert {
925                    bytes = bytes.invert();
926                }
927                let mut from_native = T::new(native);
928                let from_bytes = T::from_bytes(bytes);
929
930                from_native.assert_eq_or_nan(from_bytes);
931                from_native.get().assert_eq_or_nan(native);
932                from_bytes.get().assert_eq_or_nan(native);
933
934                assert_eq!(from_native.into_bytes(), bytes);
935                assert_eq!(from_bytes.into_bytes(), bytes);
936
937                let updated = T::Native::rand(&mut r);
938                from_native.set(updated);
939                from_native.get().assert_eq_or_nan(updated);
940            }
941        }
942
943        fn test_native<T: ByteOrderType>() {
944            test::<T>(false);
945        }
946
947        fn test_non_native<T: ByteOrderType>() {
948            test::<T>(true);
949        }
950
951        call_for_all_types!(test_native, NativeEndian);
952        call_for_all_types!(test_non_native, NonNativeEndian);
953    }
954
955    #[test]
956    fn test_ops_impls() {
957        // Test implementations of traits in `core::ops`. Some of these are
958        // fairly banal, but some are optimized to perform the operation without
959        // swapping byte order (namely, bit-wise operations which are identical
960        // regardless of byte order). These are important to test, and while
961        // we're testing those anyway, it's trivial to test all of the impls.
962
963        fn test<T, F, G, H>(op: F, op_native: G, op_native_checked: Option<H>)
964        where
965            T: ByteOrderType,
966            F: Fn(T, T) -> T,
967            G: Fn(T::Native, T::Native) -> T::Native,
968            H: Fn(T::Native, T::Native) -> Option<T::Native>,
969        {
970            let mut r = SmallRng::seed_from_u64(RNG_SEED);
971            for _ in 0..RAND_ITERS {
972                let n0 = T::Native::rand(&mut r);
973                let n1 = T::Native::rand(&mut r);
974                let t0 = T::new(n0);
975                let t1 = T::new(n1);
976
977                // If this operation would overflow/underflow, skip it rather
978                // than attempt to catch and recover from panics.
979                if matches!(&op_native_checked, Some(checked) if checked(n0, n1).is_none()) {
980                    continue;
981                }
982
983                let n_res = op_native(n0, n1);
984                let t_res = op(t0, t1);
985
986                // For `f32` and `f64`, NaN values are not considered equal to
987                // themselves. We store `Option<f32>`/`Option<f64>` and store
988                // NaN as `None` so they can still be compared.
989                let n_res = (!T::Native::is_nan(n_res)).then(|| n_res);
990                let t_res = (!T::Native::is_nan(t_res.get())).then(|| t_res.get());
991                assert_eq!(n_res, t_res);
992            }
993        }
994
995        macro_rules! test {
996            (@binary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{
997                test!(
998                    @inner $trait,
999                    core::ops::$trait::$method,
1000                    core::ops::$trait::$method,
1001                    {
1002                        #[allow(unused_mut, unused_assignments)]
1003                        let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>;
1004                        $(
1005                            op_native_checked = Some(T::Native::$checked_method);
1006                        )?
1007                        op_native_checked
1008                    },
1009                    $($call_for_macros),*
1010                );
1011            }};
1012            (@unary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{
1013                test!(
1014                    @inner $trait,
1015                    |slf, _rhs| core::ops::$trait::$method(slf),
1016                    |slf, _rhs| core::ops::$trait::$method(slf),
1017                    {
1018                        #[allow(unused_mut, unused_assignments)]
1019                        let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>;
1020                        $(
1021                            op_native_checked = Some(|slf, _rhs| T::Native::$checked_method(slf));
1022                        )?
1023                        op_native_checked
1024                    },
1025                    $($call_for_macros),*
1026                );
1027            }};
1028            (@inner $trait:ident, $op:expr, $op_native:expr, $op_native_checked:expr, $($call_for_macros:ident),*) => {{
1029                fn t<T: ByteOrderType + core::ops::$trait<Output = T>>()
1030                where
1031                    T::Native: core::ops::$trait<Output = T::Native>,
1032                {
1033                    test::<T, _, _, _>(
1034                        $op,
1035                        $op_native,
1036                        $op_native_checked,
1037                    );
1038                }
1039
1040                $(
1041                    $call_for_macros!(t, NativeEndian);
1042                    $call_for_macros!(t, NonNativeEndian);
1043                )*
1044            }};
1045        }
1046
1047        test!(@binary Add, add[checked_add], call_for_all_types);
1048        test!(@binary Div, div[checked_div], call_for_all_types);
1049        test!(@binary Mul, mul[checked_mul], call_for_all_types);
1050        test!(@binary Rem, rem[checked_rem], call_for_all_types);
1051        test!(@binary Sub, sub[checked_sub], call_for_all_types);
1052
1053        test!(@binary BitAnd, bitand, call_for_unsigned_types, call_for_signed_types);
1054        test!(@binary BitOr, bitor, call_for_unsigned_types, call_for_signed_types);
1055        test!(@binary BitXor, bitxor, call_for_unsigned_types, call_for_signed_types);
1056        test!(@binary Shl, shl[checked_shl], call_for_unsigned_types, call_for_signed_types);
1057        test!(@binary Shr, shr[checked_shr], call_for_unsigned_types, call_for_signed_types);
1058
1059        test!(@unary Not, not, call_for_signed_types, call_for_unsigned_types);
1060        test!(@unary Neg, neg, call_for_signed_types, call_for_float_types);
1061    }
1062
1063    #[test]
1064    fn test_debug_impl() {
1065        // Ensure that Debug applies format options to the inner value.
1066        let val = U16::<LE>::new(10);
1067        assert_eq!(format!("{:?}", val), "U16(10)");
1068        assert_eq!(format!("{:03?}", val), "U16(010)");
1069        assert_eq!(format!("{:x?}", val), "U16(a)");
1070    }
1071}