1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::cmp::Ordering;
use std::fmt;
use std::hash;

#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};

use simba::simd::SimdPartialOrd;

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::iter::{MatrixIter, MatrixIterMut};
use crate::base::{Const, DefaultAllocator, OVector, Scalar};
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
use std::mem::MaybeUninit;

/// A point in an euclidean space.
///
/// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/docs/user_guide/points_and_transformations)
/// for details on the distinction. The most notable difference that vectors ignore translations.
/// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will
/// transform points by applying a rotation and a translation on them. However, these isometries
/// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of
/// the isometry is ignored).
///
/// # Construction
/// * [From individual components <span style="float:right;">`new`…</span>](#construction-from-individual-components)
/// * [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
/// * [Other construction methods <span style="float:right;">`origin`, `from_slice`, `from_homogeneous`…</span>](#other-construction-methods)
///
/// # Transformation
/// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be
/// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation
/// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation
/// of said transformations for details.
#[repr(C)]
#[derive(Clone)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(
    feature = "rkyv-serialize-no-std",
    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
    archive(
        as = "OPoint<T::Archived, D>",
        bound(archive = "
        T: rkyv::Archive,
        T::Archived: Scalar,
        OVector<T, D>: rkyv::Archive<Archived = OVector<T::Archived, D>>,
        DefaultAllocator: Allocator<T::Archived, D>,
    ")
    )
)]
pub struct OPoint<T: Scalar, D: DimName>
where
    DefaultAllocator: Allocator<T, D>,
{
    /// The coordinates of this point, i.e., the shift from the origin.
    pub coords: OVector<T, D>,
}

impl<T: Scalar + fmt::Debug, D: DimName> fmt::Debug for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        self.coords.as_slice().fmt(formatter)
    }
}

impl<T: Scalar + hash::Hash, D: DimName> hash::Hash for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.coords.hash(state)
    }
}

impl<T: Scalar + Copy, D: DimName> Copy for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
    OVector<T, D>: Copy,
{
}

#[cfg(feature = "cuda")]
unsafe impl<T: Scalar + cust_core::DeviceCopy, D: DimName> cust_core::DeviceCopy for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
    OVector<T, D>: cust_core::DeviceCopy,
{
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Zeroable for OPoint<T, D>
where
    OVector<T, D>: bytemuck::Zeroable,
    DefaultAllocator: Allocator<T, D>,
{
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Pod for OPoint<T, D>
where
    T: Copy,
    OVector<T, D>: bytemuck::Pod,
    DefaultAllocator: Allocator<T, D>,
{
}

#[cfg(feature = "serde-serialize-no-std")]
impl<T: Scalar, D: DimName> Serialize for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
    <DefaultAllocator as Allocator<T, D>>::Buffer: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.coords.serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar, D: DimName> Deserialize<'a> for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
    <DefaultAllocator as Allocator<T, D>>::Buffer: Deserialize<'a>,
{
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: Deserializer<'a>,
    {
        let coords = OVector::<T, D>::deserialize(deserializer)?;

        Ok(Self::from(coords))
    }
}

impl<T: Scalar, D: DimName> OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    /// Returns a point containing the result of `f` applied to each of its entries.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Point2, Point3};
    /// let p = Point2::new(1.0, 2.0);
    /// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
    ///
    /// // This works in any dimension.
    /// let p = Point3::new(1.1, 2.1, 3.1);
    /// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
    /// ```
    #[inline]
    #[must_use]
    pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, f: F) -> OPoint<T2, D>
    where
        DefaultAllocator: Allocator<T2, D>,
    {
        self.coords.map(f).into()
    }

    /// Replaces each component of `self` by the result of a closure `f` applied on it.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Point2, Point3};
    /// let mut p = Point2::new(1.0, 2.0);
    /// p.apply(|e| *e = *e * 10.0);
    /// assert_eq!(p, Point2::new(10.0, 20.0));
    ///
    /// // This works in any dimension.
    /// let mut p = Point3::new(1.0, 2.0, 3.0);
    /// p.apply(|e| *e = *e * 10.0);
    /// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
    /// ```
    #[inline]
    pub fn apply<F: FnMut(&mut T)>(&mut self, f: F) {
        self.coords.apply(f)
    }

    /// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
    /// end of it.
    ///
    /// This is the same as `.into()`.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Point2, Point3, Vector3, Vector4};
    /// let p = Point2::new(10.0, 20.0);
    /// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
    ///
    /// // This works in any dimension.
    /// let p = Point3::new(10.0, 20.0, 30.0);
    /// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
    /// ```
    #[inline]
    #[must_use]
    pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<D, U1>>
    where
        T: One,
        D: DimNameAdd<U1>,
        DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
    {
        // TODO: this is mostly a copy-past from Vector::push.
        //       But we can’t use Vector::push because of the DimAdd bound
        //       (which we don’t use because we use DimNameAdd).
        //       We should find a way to re-use Vector::push.
        let len = self.len();
        let mut res = crate::Matrix::uninit(DimNameSum::<D, U1>::name(), Const::<1>);
        // This is basically a copy_from except that we warp the copied
        // values into MaybeUninit.
        res.generic_view_mut((0, 0), self.coords.shape_generic())
            .zip_apply(&self.coords, |out, e| *out = MaybeUninit::new(e));
        res[(len, 0)] = MaybeUninit::new(T::one());

        // Safety: res has been fully initialized.
        unsafe { res.assume_init() }
    }

    /// Linear interpolation between two points.
    ///
    /// Returns `self * (1.0 - t) + rhs.coords * t`, i.e., the linear blend of the points
    /// `self` and `rhs` using the scalar value `t`.
    ///
    /// The value for a is not restricted to the range `[0, 1]`.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::Point3;
    /// let a = Point3::new(1.0, 2.0, 3.0);
    /// let b = Point3::new(10.0, 20.0, 30.0);
    /// assert_eq!(a.lerp(&b, 0.1), Point3::new(1.9, 3.8, 5.7));
    /// ```
    #[must_use]
    pub fn lerp(&self, rhs: &OPoint<T, D>, t: T) -> OPoint<T, D>
    where
        T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul,
    {
        OPoint {
            coords: self.coords.lerp(&rhs.coords, t),
        }
    }

    /// Creates a new point with the given coordinates.
    #[deprecated(note = "Use Point::from(vector) instead.")]
    #[inline]
    pub fn from_coordinates(coords: OVector<T, D>) -> Self {
        Self { coords }
    }

    /// The dimension of this point.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Point2, Point3};
    /// let p = Point2::new(1.0, 2.0);
    /// assert_eq!(p.len(), 2);
    ///
    /// // This works in any dimension.
    /// let p = Point3::new(10.0, 20.0, 30.0);
    /// assert_eq!(p.len(), 3);
    /// ```
    #[inline]
    #[must_use]
    pub fn len(&self) -> usize {
        self.coords.len()
    }

    /// Returns true if the point contains no elements.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Point2, Point3};
    /// let p = Point2::new(1.0, 2.0);
    /// assert!(!p.is_empty());
    /// ```
    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// The stride of this point. This is the number of buffer element separating each component of
    /// this point.
    #[inline]
    #[deprecated(note = "This methods is no longer significant and will always return 1.")]
    pub fn stride(&self) -> usize {
        self.coords.strides().0
    }

    /// Iterates through this point coordinates.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::Point3;
    /// let p = Point3::new(1.0, 2.0, 3.0);
    /// let mut it = p.iter().cloned();
    ///
    /// assert_eq!(it.next(), Some(1.0));
    /// assert_eq!(it.next(), Some(2.0));
    /// assert_eq!(it.next(), Some(3.0));
    /// assert_eq!(it.next(), None);
    /// ```
    #[inline]
    pub fn iter(
        &self,
    ) -> MatrixIter<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
        self.coords.iter()
    }

    /// Gets a reference to i-th element of this point without bound-checking.
    #[inline]
    #[must_use]
    pub unsafe fn get_unchecked(&self, i: usize) -> &T {
        self.coords.vget_unchecked(i)
    }

    /// Mutably iterates through this point coordinates.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::Point3;
    /// let mut p = Point3::new(1.0, 2.0, 3.0);
    ///
    /// for e in p.iter_mut() {
    ///     *e *= 10.0;
    /// }
    ///
    /// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
    /// ```
    #[inline]
    pub fn iter_mut(
        &mut self,
    ) -> MatrixIterMut<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
        self.coords.iter_mut()
    }

    /// Gets a mutable reference to i-th element of this point without bound-checking.
    #[inline]
    #[must_use]
    pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T {
        self.coords.vget_unchecked_mut(i)
    }

    /// Swaps two entries without bound-checking.
    #[inline]
    pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
        self.coords.swap_unchecked((i1, 0), (i2, 0))
    }
}

impl<T: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for OPoint<T, D>
where
    T::Epsilon: Clone,
    DefaultAllocator: Allocator<T, D>,
{
    type Epsilon = T::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.coords.abs_diff_eq(&other.coords, epsilon)
    }
}

impl<T: Scalar + RelativeEq, D: DimName> RelativeEq for OPoint<T, D>
where
    T::Epsilon: Clone,
    DefaultAllocator: Allocator<T, D>,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.coords
            .relative_eq(&other.coords, epsilon, max_relative)
    }
}

impl<T: Scalar + UlpsEq, D: DimName> UlpsEq for OPoint<T, D>
where
    T::Epsilon: Clone,
    DefaultAllocator: Allocator<T, D>,
{
    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
    }
}

impl<T: Scalar + Eq, D: DimName> Eq for OPoint<T, D> where DefaultAllocator: Allocator<T, D> {}

impl<T: Scalar, D: DimName> PartialEq for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    #[inline]
    fn eq(&self, right: &Self) -> bool {
        self.coords == right.coords
    }
}

impl<T: Scalar + PartialOrd, D: DimName> PartialOrd for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.coords.partial_cmp(&other.coords)
    }

    #[inline]
    fn lt(&self, right: &Self) -> bool {
        self.coords.lt(&right.coords)
    }

    #[inline]
    fn le(&self, right: &Self) -> bool {
        self.coords.le(&right.coords)
    }

    #[inline]
    fn gt(&self, right: &Self) -> bool {
        self.coords.gt(&right.coords)
    }

    #[inline]
    fn ge(&self, right: &Self) -> bool {
        self.coords.ge(&right.coords)
    }
}

/*
 * inf/sup
 */
impl<T: Scalar + SimdPartialOrd, D: DimName> OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    /// Computes the infimum (aka. componentwise min) of two points.
    #[inline]
    #[must_use]
    pub fn inf(&self, other: &Self) -> OPoint<T, D> {
        self.coords.inf(&other.coords).into()
    }

    /// Computes the supremum (aka. componentwise max) of two points.
    #[inline]
    #[must_use]
    pub fn sup(&self, other: &Self) -> OPoint<T, D> {
        self.coords.sup(&other.coords).into()
    }

    /// Computes the (infimum, supremum) of two points.
    #[inline]
    #[must_use]
    pub fn inf_sup(&self, other: &Self) -> (OPoint<T, D>, OPoint<T, D>) {
        let (inf, sup) = self.coords.inf_sup(&other.coords);
        (inf.into(), sup.into())
    }
}

/*
 *
 * Display
 *
 */
impl<T: Scalar + fmt::Display, D: DimName> fmt::Display for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{{")?;

        let mut it = self.coords.iter();

        write!(f, "{}", *it.next().unwrap())?;

        for comp in it {
            write!(f, ", {}", *comp)?;
        }

        write!(f, "}}")
    }
}