glam/f64/
daffine2.rs

1// Generated from affine.rs.tera template. Edit the template, not the generated file.
2
3use crate::{DMat2, DMat3, DVec2};
4use core::ops::{Deref, DerefMut, Mul, MulAssign};
5
6/// A 2D affine transform, which can represent translation, rotation, scaling and shear.
7#[derive(Copy, Clone)]
8#[repr(C)]
9pub struct DAffine2 {
10    pub matrix2: DMat2,
11    pub translation: DVec2,
12}
13
14impl DAffine2 {
15    /// The degenerate zero transform.
16    ///
17    /// This transforms any finite vector and point to zero.
18    /// The zero transform is non-invertible.
19    pub const ZERO: Self = Self {
20        matrix2: DMat2::ZERO,
21        translation: DVec2::ZERO,
22    };
23
24    /// The identity transform.
25    ///
26    /// Multiplying a vector with this returns the same vector.
27    pub const IDENTITY: Self = Self {
28        matrix2: DMat2::IDENTITY,
29        translation: DVec2::ZERO,
30    };
31
32    /// All NAN:s.
33    pub const NAN: Self = Self {
34        matrix2: DMat2::NAN,
35        translation: DVec2::NAN,
36    };
37
38    /// Creates an affine transform from three column vectors.
39    #[inline(always)]
40    #[must_use]
41    pub const fn from_cols(x_axis: DVec2, y_axis: DVec2, z_axis: DVec2) -> Self {
42        Self {
43            matrix2: DMat2::from_cols(x_axis, y_axis),
44            translation: z_axis,
45        }
46    }
47
48    /// Creates an affine transform from a `[f64; 6]` array stored in column major order.
49    #[inline]
50    #[must_use]
51    pub fn from_cols_array(m: &[f64; 6]) -> Self {
52        Self {
53            matrix2: DMat2::from_cols_array(&[m[0], m[1], m[2], m[3]]),
54            translation: DVec2::from_array([m[4], m[5]]),
55        }
56    }
57
58    /// Creates a `[f64; 6]` array storing data in column major order.
59    #[inline]
60    #[must_use]
61    pub fn to_cols_array(&self) -> [f64; 6] {
62        let x = &self.matrix2.x_axis;
63        let y = &self.matrix2.y_axis;
64        let z = &self.translation;
65        [x.x, x.y, y.x, y.y, z.x, z.y]
66    }
67
68    /// Creates an affine transform from a `[[f64; 2]; 3]`
69    /// 2D array stored in column major order.
70    /// If your data is in row major order you will need to `transpose` the returned
71    /// matrix.
72    #[inline]
73    #[must_use]
74    pub fn from_cols_array_2d(m: &[[f64; 2]; 3]) -> Self {
75        Self {
76            matrix2: DMat2::from_cols(m[0].into(), m[1].into()),
77            translation: m[2].into(),
78        }
79    }
80
81    /// Creates a `[[f64; 2]; 3]` 2D array storing data in
82    /// column major order.
83    /// If you require data in row major order `transpose` the matrix first.
84    #[inline]
85    #[must_use]
86    pub fn to_cols_array_2d(&self) -> [[f64; 2]; 3] {
87        [
88            self.matrix2.x_axis.into(),
89            self.matrix2.y_axis.into(),
90            self.translation.into(),
91        ]
92    }
93
94    /// Creates an affine transform from the first 6 values in `slice`.
95    ///
96    /// # Panics
97    ///
98    /// Panics if `slice` is less than 6 elements long.
99    #[inline]
100    #[must_use]
101    pub fn from_cols_slice(slice: &[f64]) -> Self {
102        Self {
103            matrix2: DMat2::from_cols_slice(&slice[0..4]),
104            translation: DVec2::from_slice(&slice[4..6]),
105        }
106    }
107
108    /// Writes the columns of `self` to the first 6 elements in `slice`.
109    ///
110    /// # Panics
111    ///
112    /// Panics if `slice` is less than 6 elements long.
113    #[inline]
114    pub fn write_cols_to_slice(self, slice: &mut [f64]) {
115        self.matrix2.write_cols_to_slice(&mut slice[0..4]);
116        self.translation.write_to_slice(&mut slice[4..6]);
117    }
118
119    /// Creates an affine transform that changes scale.
120    /// Note that if any scale is zero the transform will be non-invertible.
121    #[inline]
122    #[must_use]
123    pub fn from_scale(scale: DVec2) -> Self {
124        Self {
125            matrix2: DMat2::from_diagonal(scale),
126            translation: DVec2::ZERO,
127        }
128    }
129
130    /// Creates an affine transform from the given rotation `angle`.
131    #[inline]
132    #[must_use]
133    pub fn from_angle(angle: f64) -> Self {
134        Self {
135            matrix2: DMat2::from_angle(angle),
136            translation: DVec2::ZERO,
137        }
138    }
139
140    /// Creates an affine transformation from the given 2D `translation`.
141    #[inline]
142    #[must_use]
143    pub fn from_translation(translation: DVec2) -> Self {
144        Self {
145            matrix2: DMat2::IDENTITY,
146            translation,
147        }
148    }
149
150    /// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation)
151    #[inline]
152    #[must_use]
153    pub fn from_mat2(matrix2: DMat2) -> Self {
154        Self {
155            matrix2,
156            translation: DVec2::ZERO,
157        }
158    }
159
160    /// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) and a
161    /// translation vector.
162    ///
163    /// Equivalent to
164    /// `DAffine2::from_translation(translation) * DAffine2::from_mat2(mat2)`
165    #[inline]
166    #[must_use]
167    pub fn from_mat2_translation(matrix2: DMat2, translation: DVec2) -> Self {
168        Self {
169            matrix2,
170            translation,
171        }
172    }
173
174    /// Creates an affine transform from the given 2D `scale`, rotation `angle` (in radians) and
175    /// `translation`.
176    ///
177    /// Equivalent to `DAffine2::from_translation(translation) *
178    /// DAffine2::from_angle(angle) * DAffine2::from_scale(scale)`
179    #[inline]
180    #[must_use]
181    pub fn from_scale_angle_translation(scale: DVec2, angle: f64, translation: DVec2) -> Self {
182        let rotation = DMat2::from_angle(angle);
183        Self {
184            matrix2: DMat2::from_cols(rotation.x_axis * scale.x, rotation.y_axis * scale.y),
185            translation,
186        }
187    }
188
189    /// Creates an affine transform from the given 2D rotation `angle` (in radians) and
190    /// `translation`.
191    ///
192    /// Equivalent to `DAffine2::from_translation(translation) * DAffine2::from_angle(angle)`
193    #[inline]
194    #[must_use]
195    pub fn from_angle_translation(angle: f64, translation: DVec2) -> Self {
196        Self {
197            matrix2: DMat2::from_angle(angle),
198            translation,
199        }
200    }
201
202    /// The given `DMat3` must be an affine transform,
203    #[inline]
204    #[must_use]
205    pub fn from_mat3(m: DMat3) -> Self {
206        use crate::swizzles::Vec3Swizzles;
207        Self {
208            matrix2: DMat2::from_cols(m.x_axis.xy(), m.y_axis.xy()),
209            translation: m.z_axis.xy(),
210        }
211    }
212
213    /// Extracts `scale`, `angle` and `translation` from `self`.
214    ///
215    /// The transform is expected to be non-degenerate and without shearing, or the output
216    /// will be invalid.
217    ///
218    /// # Panics
219    ///
220    /// Will panic if the determinant `self.matrix2` is zero or if the resulting scale
221    /// vector contains any zero elements when `glam_assert` is enabled.
222    #[inline]
223    #[must_use]
224    pub fn to_scale_angle_translation(self) -> (DVec2, f64, DVec2) {
225        use crate::f64::math;
226        let det = self.matrix2.determinant();
227        glam_assert!(det != 0.0);
228
229        let scale = DVec2::new(
230            self.matrix2.x_axis.length() * math::signum(det),
231            self.matrix2.y_axis.length(),
232        );
233
234        glam_assert!(scale.cmpne(DVec2::ZERO).all());
235
236        let angle = math::atan2(-self.matrix2.y_axis.x, self.matrix2.y_axis.y);
237
238        (scale, angle, self.translation)
239    }
240
241    /// Transforms the given 2D point, applying shear, scale, rotation and translation.
242    #[inline]
243    #[must_use]
244    pub fn transform_point2(&self, rhs: DVec2) -> DVec2 {
245        self.matrix2 * rhs + self.translation
246    }
247
248    /// Transforms the given 2D vector, applying shear, scale and rotation (but NOT
249    /// translation).
250    ///
251    /// To also apply translation, use [`Self::transform_point2()`] instead.
252    #[inline]
253    pub fn transform_vector2(&self, rhs: DVec2) -> DVec2 {
254        self.matrix2 * rhs
255    }
256
257    /// Returns `true` if, and only if, all elements are finite.
258    ///
259    /// If any element is either `NaN`, positive or negative infinity, this will return
260    /// `false`.
261    #[inline]
262    #[must_use]
263    pub fn is_finite(&self) -> bool {
264        self.matrix2.is_finite() && self.translation.is_finite()
265    }
266
267    /// Returns `true` if any elements are `NaN`.
268    #[inline]
269    #[must_use]
270    pub fn is_nan(&self) -> bool {
271        self.matrix2.is_nan() || self.translation.is_nan()
272    }
273
274    /// Returns true if the absolute difference of all elements between `self` and `rhs`
275    /// is less than or equal to `max_abs_diff`.
276    ///
277    /// This can be used to compare if two 3x4 matrices contain similar elements. It works
278    /// best when comparing with a known value. The `max_abs_diff` that should be used used
279    /// depends on the values being compared against.
280    ///
281    /// For more see
282    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
283    #[inline]
284    #[must_use]
285    pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool {
286        self.matrix2.abs_diff_eq(rhs.matrix2, max_abs_diff)
287            && self.translation.abs_diff_eq(rhs.translation, max_abs_diff)
288    }
289
290    /// Return the inverse of this transform.
291    ///
292    /// Note that if the transform is not invertible the result will be invalid.
293    #[inline]
294    #[must_use]
295    pub fn inverse(&self) -> Self {
296        let matrix2 = self.matrix2.inverse();
297        // transform negative translation by the matrix inverse:
298        let translation = -(matrix2 * self.translation);
299
300        Self {
301            matrix2,
302            translation,
303        }
304    }
305}
306
307impl Default for DAffine2 {
308    #[inline(always)]
309    fn default() -> Self {
310        Self::IDENTITY
311    }
312}
313
314impl Deref for DAffine2 {
315    type Target = crate::deref::Cols3<DVec2>;
316    #[inline(always)]
317    fn deref(&self) -> &Self::Target {
318        unsafe { &*(self as *const Self as *const Self::Target) }
319    }
320}
321
322impl DerefMut for DAffine2 {
323    #[inline(always)]
324    fn deref_mut(&mut self) -> &mut Self::Target {
325        unsafe { &mut *(self as *mut Self as *mut Self::Target) }
326    }
327}
328
329impl PartialEq for DAffine2 {
330    #[inline]
331    fn eq(&self, rhs: &Self) -> bool {
332        self.matrix2.eq(&rhs.matrix2) && self.translation.eq(&rhs.translation)
333    }
334}
335
336impl core::fmt::Debug for DAffine2 {
337    fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
338        fmt.debug_struct(stringify!(DAffine2))
339            .field("matrix2", &self.matrix2)
340            .field("translation", &self.translation)
341            .finish()
342    }
343}
344
345impl core::fmt::Display for DAffine2 {
346    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
347        if let Some(p) = f.precision() {
348            write!(
349                f,
350                "[{:.*}, {:.*}, {:.*}]",
351                p, self.matrix2.x_axis, p, self.matrix2.y_axis, p, self.translation
352            )
353        } else {
354            write!(
355                f,
356                "[{}, {}, {}]",
357                self.matrix2.x_axis, self.matrix2.y_axis, self.translation
358            )
359        }
360    }
361}
362
363impl<'a> core::iter::Product<&'a Self> for DAffine2 {
364    fn product<I>(iter: I) -> Self
365    where
366        I: Iterator<Item = &'a Self>,
367    {
368        iter.fold(Self::IDENTITY, |a, &b| a * b)
369    }
370}
371
372impl Mul for DAffine2 {
373    type Output = DAffine2;
374
375    #[inline]
376    fn mul(self, rhs: DAffine2) -> Self::Output {
377        Self {
378            matrix2: self.matrix2 * rhs.matrix2,
379            translation: self.matrix2 * rhs.translation + self.translation,
380        }
381    }
382}
383
384impl MulAssign for DAffine2 {
385    #[inline]
386    fn mul_assign(&mut self, rhs: DAffine2) {
387        *self = self.mul(rhs);
388    }
389}
390
391impl From<DAffine2> for DMat3 {
392    #[inline]
393    fn from(m: DAffine2) -> DMat3 {
394        Self::from_cols(
395            m.matrix2.x_axis.extend(0.0),
396            m.matrix2.y_axis.extend(0.0),
397            m.translation.extend(1.0),
398        )
399    }
400}
401
402impl Mul<DMat3> for DAffine2 {
403    type Output = DMat3;
404
405    #[inline]
406    fn mul(self, rhs: DMat3) -> Self::Output {
407        DMat3::from(self) * rhs
408    }
409}
410
411impl Mul<DAffine2> for DMat3 {
412    type Output = DMat3;
413
414    #[inline]
415    fn mul(self, rhs: DAffine2) -> Self::Output {
416        self * DMat3::from(rhs)
417    }
418}