glam/f64/
dmat4.rs

1// Generated from mat.rs.tera template. Edit the template, not the generated file.
2
3use crate::{
4    euler::{FromEuler, ToEuler},
5    f64::math,
6    swizzles::*,
7    DMat3, DQuat, DVec3, DVec4, EulerRot, Mat4,
8};
9use core::fmt;
10use core::iter::{Product, Sum};
11use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
12
13/// Creates a 4x4 matrix from four column vectors.
14#[inline(always)]
15#[must_use]
16pub const fn dmat4(x_axis: DVec4, y_axis: DVec4, z_axis: DVec4, w_axis: DVec4) -> DMat4 {
17    DMat4::from_cols(x_axis, y_axis, z_axis, w_axis)
18}
19
20/// A 4x4 column major matrix.
21///
22/// This 4x4 matrix type features convenience methods for creating and using affine transforms and
23/// perspective projections. If you are primarily dealing with 3D affine transformations
24/// considering using [`DAffine3`](crate::DAffine3) which is faster than a 4x4 matrix
25/// for some affine operations.
26///
27/// Affine transformations including 3D translation, rotation and scale can be created
28/// using methods such as [`Self::from_translation()`], [`Self::from_quat()`],
29/// [`Self::from_scale()`] and [`Self::from_scale_rotation_translation()`].
30///
31/// Orthographic projections can be created using the methods [`Self::orthographic_lh()`] for
32/// left-handed coordinate systems and [`Self::orthographic_rh()`] for right-handed
33/// systems. The resulting matrix is also an affine transformation.
34///
35/// The [`Self::transform_point3()`] and [`Self::transform_vector3()`] convenience methods
36/// are provided for performing affine transformations on 3D vectors and points. These
37/// multiply 3D inputs as 4D vectors with an implicit `w` value of `1` for points and `0`
38/// for vectors respectively. These methods assume that `Self` contains a valid affine
39/// transform.
40///
41/// Perspective projections can be created using methods such as
42/// [`Self::perspective_lh()`], [`Self::perspective_infinite_lh()`] and
43/// [`Self::perspective_infinite_reverse_lh()`] for left-handed co-ordinate systems and
44/// [`Self::perspective_rh()`], [`Self::perspective_infinite_rh()`] and
45/// [`Self::perspective_infinite_reverse_rh()`] for right-handed co-ordinate systems.
46///
47/// The resulting perspective project can be use to transform 3D vectors as points with
48/// perspective correction using the [`Self::project_point3()`] convenience method.
49#[derive(Clone, Copy)]
50#[cfg_attr(feature = "cuda", repr(align(16)))]
51#[repr(C)]
52pub struct DMat4 {
53    pub x_axis: DVec4,
54    pub y_axis: DVec4,
55    pub z_axis: DVec4,
56    pub w_axis: DVec4,
57}
58
59impl DMat4 {
60    /// A 4x4 matrix with all elements set to `0.0`.
61    pub const ZERO: Self = Self::from_cols(DVec4::ZERO, DVec4::ZERO, DVec4::ZERO, DVec4::ZERO);
62
63    /// A 4x4 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
64    pub const IDENTITY: Self = Self::from_cols(DVec4::X, DVec4::Y, DVec4::Z, DVec4::W);
65
66    /// All NAN:s.
67    pub const NAN: Self = Self::from_cols(DVec4::NAN, DVec4::NAN, DVec4::NAN, DVec4::NAN);
68
69    #[allow(clippy::too_many_arguments)]
70    #[inline(always)]
71    #[must_use]
72    const fn new(
73        m00: f64,
74        m01: f64,
75        m02: f64,
76        m03: f64,
77        m10: f64,
78        m11: f64,
79        m12: f64,
80        m13: f64,
81        m20: f64,
82        m21: f64,
83        m22: f64,
84        m23: f64,
85        m30: f64,
86        m31: f64,
87        m32: f64,
88        m33: f64,
89    ) -> Self {
90        Self {
91            x_axis: DVec4::new(m00, m01, m02, m03),
92            y_axis: DVec4::new(m10, m11, m12, m13),
93            z_axis: DVec4::new(m20, m21, m22, m23),
94            w_axis: DVec4::new(m30, m31, m32, m33),
95        }
96    }
97
98    /// Creates a 4x4 matrix from four column vectors.
99    #[inline(always)]
100    #[must_use]
101    pub const fn from_cols(x_axis: DVec4, y_axis: DVec4, z_axis: DVec4, w_axis: DVec4) -> Self {
102        Self {
103            x_axis,
104            y_axis,
105            z_axis,
106            w_axis,
107        }
108    }
109
110    /// Creates a 4x4 matrix from a `[f64; 16]` array stored in column major order.
111    /// If your data is stored in row major you will need to `transpose` the returned
112    /// matrix.
113    #[inline]
114    #[must_use]
115    pub const fn from_cols_array(m: &[f64; 16]) -> Self {
116        Self::new(
117            m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13],
118            m[14], m[15],
119        )
120    }
121
122    /// Creates a `[f64; 16]` array storing data in column major order.
123    /// If you require data in row major order `transpose` the matrix first.
124    #[inline]
125    #[must_use]
126    pub const fn to_cols_array(&self) -> [f64; 16] {
127        [
128            self.x_axis.x,
129            self.x_axis.y,
130            self.x_axis.z,
131            self.x_axis.w,
132            self.y_axis.x,
133            self.y_axis.y,
134            self.y_axis.z,
135            self.y_axis.w,
136            self.z_axis.x,
137            self.z_axis.y,
138            self.z_axis.z,
139            self.z_axis.w,
140            self.w_axis.x,
141            self.w_axis.y,
142            self.w_axis.z,
143            self.w_axis.w,
144        ]
145    }
146
147    /// Creates a 4x4 matrix from a `[[f64; 4]; 4]` 4D array stored in column major order.
148    /// If your data is in row major order you will need to `transpose` the returned
149    /// matrix.
150    #[inline]
151    #[must_use]
152    pub const fn from_cols_array_2d(m: &[[f64; 4]; 4]) -> Self {
153        Self::from_cols(
154            DVec4::from_array(m[0]),
155            DVec4::from_array(m[1]),
156            DVec4::from_array(m[2]),
157            DVec4::from_array(m[3]),
158        )
159    }
160
161    /// Creates a `[[f64; 4]; 4]` 4D array storing data in column major order.
162    /// If you require data in row major order `transpose` the matrix first.
163    #[inline]
164    #[must_use]
165    pub const fn to_cols_array_2d(&self) -> [[f64; 4]; 4] {
166        [
167            self.x_axis.to_array(),
168            self.y_axis.to_array(),
169            self.z_axis.to_array(),
170            self.w_axis.to_array(),
171        ]
172    }
173
174    /// Creates a 4x4 matrix with its diagonal set to `diagonal` and all other entries set to 0.
175    #[doc(alias = "scale")]
176    #[inline]
177    #[must_use]
178    pub const fn from_diagonal(diagonal: DVec4) -> Self {
179        Self::new(
180            diagonal.x, 0.0, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, 0.0, diagonal.z, 0.0, 0.0,
181            0.0, 0.0, diagonal.w,
182        )
183    }
184
185    #[inline]
186    #[must_use]
187    fn quat_to_axes(rotation: DQuat) -> (DVec4, DVec4, DVec4) {
188        glam_assert!(rotation.is_normalized());
189
190        let (x, y, z, w) = rotation.into();
191        let x2 = x + x;
192        let y2 = y + y;
193        let z2 = z + z;
194        let xx = x * x2;
195        let xy = x * y2;
196        let xz = x * z2;
197        let yy = y * y2;
198        let yz = y * z2;
199        let zz = z * z2;
200        let wx = w * x2;
201        let wy = w * y2;
202        let wz = w * z2;
203
204        let x_axis = DVec4::new(1.0 - (yy + zz), xy + wz, xz - wy, 0.0);
205        let y_axis = DVec4::new(xy - wz, 1.0 - (xx + zz), yz + wx, 0.0);
206        let z_axis = DVec4::new(xz + wy, yz - wx, 1.0 - (xx + yy), 0.0);
207        (x_axis, y_axis, z_axis)
208    }
209
210    /// Creates an affine transformation matrix from the given 3D `scale`, `rotation` and
211    /// `translation`.
212    ///
213    /// The resulting matrix can be used to transform 3D points and vectors. See
214    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
215    ///
216    /// # Panics
217    ///
218    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
219    #[inline]
220    #[must_use]
221    pub fn from_scale_rotation_translation(
222        scale: DVec3,
223        rotation: DQuat,
224        translation: DVec3,
225    ) -> Self {
226        let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
227        Self::from_cols(
228            x_axis.mul(scale.x),
229            y_axis.mul(scale.y),
230            z_axis.mul(scale.z),
231            DVec4::from((translation, 1.0)),
232        )
233    }
234
235    /// Creates an affine transformation matrix from the given 3D `translation`.
236    ///
237    /// The resulting matrix can be used to transform 3D points and vectors. See
238    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
239    ///
240    /// # Panics
241    ///
242    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
243    #[inline]
244    #[must_use]
245    pub fn from_rotation_translation(rotation: DQuat, translation: DVec3) -> Self {
246        let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
247        Self::from_cols(x_axis, y_axis, z_axis, DVec4::from((translation, 1.0)))
248    }
249
250    /// Extracts `scale`, `rotation` and `translation` from `self`. The input matrix is
251    /// expected to be a 3D affine transformation matrix otherwise the output will be invalid.
252    ///
253    /// # Panics
254    ///
255    /// Will panic if the determinant of `self` is zero or if the resulting scale vector
256    /// contains any zero elements when `glam_assert` is enabled.
257    #[inline]
258    #[must_use]
259    pub fn to_scale_rotation_translation(&self) -> (DVec3, DQuat, DVec3) {
260        let det = self.determinant();
261        glam_assert!(det != 0.0);
262
263        let scale = DVec3::new(
264            self.x_axis.length() * math::signum(det),
265            self.y_axis.length(),
266            self.z_axis.length(),
267        );
268
269        glam_assert!(scale.cmpne(DVec3::ZERO).all());
270
271        let inv_scale = scale.recip();
272
273        let rotation = DQuat::from_rotation_axes(
274            self.x_axis.mul(inv_scale.x).xyz(),
275            self.y_axis.mul(inv_scale.y).xyz(),
276            self.z_axis.mul(inv_scale.z).xyz(),
277        );
278
279        let translation = self.w_axis.xyz();
280
281        (scale, rotation, translation)
282    }
283
284    /// Creates an affine transformation matrix from the given `rotation` quaternion.
285    ///
286    /// The resulting matrix can be used to transform 3D points and vectors. See
287    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
288    ///
289    /// # Panics
290    ///
291    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
292    #[inline]
293    #[must_use]
294    pub fn from_quat(rotation: DQuat) -> Self {
295        let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
296        Self::from_cols(x_axis, y_axis, z_axis, DVec4::W)
297    }
298
299    /// Creates an affine transformation matrix from the given 3x3 linear transformation
300    /// matrix.
301    ///
302    /// The resulting matrix can be used to transform 3D points and vectors. See
303    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
304    #[inline]
305    #[must_use]
306    pub fn from_mat3(m: DMat3) -> Self {
307        Self::from_cols(
308            DVec4::from((m.x_axis, 0.0)),
309            DVec4::from((m.y_axis, 0.0)),
310            DVec4::from((m.z_axis, 0.0)),
311            DVec4::W,
312        )
313    }
314
315    /// Creates an affine transformation matrix from the given 3D `translation`.
316    ///
317    /// The resulting matrix can be used to transform 3D points and vectors. See
318    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
319    #[inline]
320    #[must_use]
321    pub fn from_translation(translation: DVec3) -> Self {
322        Self::from_cols(
323            DVec4::X,
324            DVec4::Y,
325            DVec4::Z,
326            DVec4::new(translation.x, translation.y, translation.z, 1.0),
327        )
328    }
329
330    /// Creates an affine transformation matrix containing a 3D rotation around a normalized
331    /// rotation `axis` of `angle` (in radians).
332    ///
333    /// The resulting matrix can be used to transform 3D points and vectors. See
334    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
335    ///
336    /// # Panics
337    ///
338    /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
339    #[inline]
340    #[must_use]
341    pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self {
342        glam_assert!(axis.is_normalized());
343
344        let (sin, cos) = math::sin_cos(angle);
345        let axis_sin = axis.mul(sin);
346        let axis_sq = axis.mul(axis);
347        let omc = 1.0 - cos;
348        let xyomc = axis.x * axis.y * omc;
349        let xzomc = axis.x * axis.z * omc;
350        let yzomc = axis.y * axis.z * omc;
351        Self::from_cols(
352            DVec4::new(
353                axis_sq.x * omc + cos,
354                xyomc + axis_sin.z,
355                xzomc - axis_sin.y,
356                0.0,
357            ),
358            DVec4::new(
359                xyomc - axis_sin.z,
360                axis_sq.y * omc + cos,
361                yzomc + axis_sin.x,
362                0.0,
363            ),
364            DVec4::new(
365                xzomc + axis_sin.y,
366                yzomc - axis_sin.x,
367                axis_sq.z * omc + cos,
368                0.0,
369            ),
370            DVec4::W,
371        )
372    }
373
374    /// Creates a affine transformation matrix containing a rotation from the given euler
375    /// rotation sequence and angles (in radians).
376    ///
377    /// The resulting matrix can be used to transform 3D points and vectors. See
378    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
379    #[inline]
380    #[must_use]
381    pub fn from_euler(order: EulerRot, a: f64, b: f64, c: f64) -> Self {
382        Self::from_euler_angles(order, a, b, c)
383    }
384
385    /// Extract Euler angles with the given Euler rotation order.
386    ///
387    /// Note if the upper 3x3 matrix contain scales, shears, or other non-rotation transformations
388    /// then the resulting Euler angles will be ill-defined.
389    ///
390    /// # Panics
391    ///
392    /// Will panic if any column of the upper 3x3 rotation matrix is not normalized when
393    /// `glam_assert` is enabled.
394    #[inline]
395    #[must_use]
396    pub fn to_euler(&self, order: EulerRot) -> (f64, f64, f64) {
397        glam_assert!(
398            self.x_axis.xyz().is_normalized()
399                && self.y_axis.xyz().is_normalized()
400                && self.z_axis.xyz().is_normalized()
401        );
402        self.to_euler_angles(order)
403    }
404
405    /// Creates an affine transformation matrix containing a 3D rotation around the x axis of
406    /// `angle` (in radians).
407    ///
408    /// The resulting matrix can be used to transform 3D points and vectors. See
409    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
410    #[inline]
411    #[must_use]
412    pub fn from_rotation_x(angle: f64) -> Self {
413        let (sina, cosa) = math::sin_cos(angle);
414        Self::from_cols(
415            DVec4::X,
416            DVec4::new(0.0, cosa, sina, 0.0),
417            DVec4::new(0.0, -sina, cosa, 0.0),
418            DVec4::W,
419        )
420    }
421
422    /// Creates an affine transformation matrix containing a 3D rotation around the y axis of
423    /// `angle` (in radians).
424    ///
425    /// The resulting matrix can be used to transform 3D points and vectors. See
426    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
427    #[inline]
428    #[must_use]
429    pub fn from_rotation_y(angle: f64) -> Self {
430        let (sina, cosa) = math::sin_cos(angle);
431        Self::from_cols(
432            DVec4::new(cosa, 0.0, -sina, 0.0),
433            DVec4::Y,
434            DVec4::new(sina, 0.0, cosa, 0.0),
435            DVec4::W,
436        )
437    }
438
439    /// Creates an affine transformation matrix containing a 3D rotation around the z axis of
440    /// `angle` (in radians).
441    ///
442    /// The resulting matrix can be used to transform 3D points and vectors. See
443    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
444    #[inline]
445    #[must_use]
446    pub fn from_rotation_z(angle: f64) -> Self {
447        let (sina, cosa) = math::sin_cos(angle);
448        Self::from_cols(
449            DVec4::new(cosa, sina, 0.0, 0.0),
450            DVec4::new(-sina, cosa, 0.0, 0.0),
451            DVec4::Z,
452            DVec4::W,
453        )
454    }
455
456    /// Creates an affine transformation matrix containing the given 3D non-uniform `scale`.
457    ///
458    /// The resulting matrix can be used to transform 3D points and vectors. See
459    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
460    ///
461    /// # Panics
462    ///
463    /// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
464    #[inline]
465    #[must_use]
466    pub fn from_scale(scale: DVec3) -> Self {
467        // Do not panic as long as any component is non-zero
468        glam_assert!(scale.cmpne(DVec3::ZERO).any());
469
470        Self::from_cols(
471            DVec4::new(scale.x, 0.0, 0.0, 0.0),
472            DVec4::new(0.0, scale.y, 0.0, 0.0),
473            DVec4::new(0.0, 0.0, scale.z, 0.0),
474            DVec4::W,
475        )
476    }
477
478    /// Creates a 4x4 matrix from the first 16 values in `slice`.
479    ///
480    /// # Panics
481    ///
482    /// Panics if `slice` is less than 16 elements long.
483    #[inline]
484    #[must_use]
485    pub const fn from_cols_slice(slice: &[f64]) -> Self {
486        Self::new(
487            slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
488            slice[8], slice[9], slice[10], slice[11], slice[12], slice[13], slice[14], slice[15],
489        )
490    }
491
492    /// Writes the columns of `self` to the first 16 elements in `slice`.
493    ///
494    /// # Panics
495    ///
496    /// Panics if `slice` is less than 16 elements long.
497    #[inline]
498    pub fn write_cols_to_slice(self, slice: &mut [f64]) {
499        slice[0] = self.x_axis.x;
500        slice[1] = self.x_axis.y;
501        slice[2] = self.x_axis.z;
502        slice[3] = self.x_axis.w;
503        slice[4] = self.y_axis.x;
504        slice[5] = self.y_axis.y;
505        slice[6] = self.y_axis.z;
506        slice[7] = self.y_axis.w;
507        slice[8] = self.z_axis.x;
508        slice[9] = self.z_axis.y;
509        slice[10] = self.z_axis.z;
510        slice[11] = self.z_axis.w;
511        slice[12] = self.w_axis.x;
512        slice[13] = self.w_axis.y;
513        slice[14] = self.w_axis.z;
514        slice[15] = self.w_axis.w;
515    }
516
517    /// Returns the matrix column for the given `index`.
518    ///
519    /// # Panics
520    ///
521    /// Panics if `index` is greater than 3.
522    #[inline]
523    #[must_use]
524    pub fn col(&self, index: usize) -> DVec4 {
525        match index {
526            0 => self.x_axis,
527            1 => self.y_axis,
528            2 => self.z_axis,
529            3 => self.w_axis,
530            _ => panic!("index out of bounds"),
531        }
532    }
533
534    /// Returns a mutable reference to the matrix column for the given `index`.
535    ///
536    /// # Panics
537    ///
538    /// Panics if `index` is greater than 3.
539    #[inline]
540    pub fn col_mut(&mut self, index: usize) -> &mut DVec4 {
541        match index {
542            0 => &mut self.x_axis,
543            1 => &mut self.y_axis,
544            2 => &mut self.z_axis,
545            3 => &mut self.w_axis,
546            _ => panic!("index out of bounds"),
547        }
548    }
549
550    /// Returns the matrix row for the given `index`.
551    ///
552    /// # Panics
553    ///
554    /// Panics if `index` is greater than 3.
555    #[inline]
556    #[must_use]
557    pub fn row(&self, index: usize) -> DVec4 {
558        match index {
559            0 => DVec4::new(self.x_axis.x, self.y_axis.x, self.z_axis.x, self.w_axis.x),
560            1 => DVec4::new(self.x_axis.y, self.y_axis.y, self.z_axis.y, self.w_axis.y),
561            2 => DVec4::new(self.x_axis.z, self.y_axis.z, self.z_axis.z, self.w_axis.z),
562            3 => DVec4::new(self.x_axis.w, self.y_axis.w, self.z_axis.w, self.w_axis.w),
563            _ => panic!("index out of bounds"),
564        }
565    }
566
567    /// Returns `true` if, and only if, all elements are finite.
568    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
569    #[inline]
570    #[must_use]
571    pub fn is_finite(&self) -> bool {
572        self.x_axis.is_finite()
573            && self.y_axis.is_finite()
574            && self.z_axis.is_finite()
575            && self.w_axis.is_finite()
576    }
577
578    /// Returns `true` if any elements are `NaN`.
579    #[inline]
580    #[must_use]
581    pub fn is_nan(&self) -> bool {
582        self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan() || self.w_axis.is_nan()
583    }
584
585    /// Returns the transpose of `self`.
586    #[inline]
587    #[must_use]
588    pub fn transpose(&self) -> Self {
589        Self {
590            x_axis: DVec4::new(self.x_axis.x, self.y_axis.x, self.z_axis.x, self.w_axis.x),
591            y_axis: DVec4::new(self.x_axis.y, self.y_axis.y, self.z_axis.y, self.w_axis.y),
592            z_axis: DVec4::new(self.x_axis.z, self.y_axis.z, self.z_axis.z, self.w_axis.z),
593            w_axis: DVec4::new(self.x_axis.w, self.y_axis.w, self.z_axis.w, self.w_axis.w),
594        }
595    }
596
597    /// Returns the determinant of `self`.
598    #[must_use]
599    pub fn determinant(&self) -> f64 {
600        let (m00, m01, m02, m03) = self.x_axis.into();
601        let (m10, m11, m12, m13) = self.y_axis.into();
602        let (m20, m21, m22, m23) = self.z_axis.into();
603        let (m30, m31, m32, m33) = self.w_axis.into();
604
605        let a2323 = m22 * m33 - m23 * m32;
606        let a1323 = m21 * m33 - m23 * m31;
607        let a1223 = m21 * m32 - m22 * m31;
608        let a0323 = m20 * m33 - m23 * m30;
609        let a0223 = m20 * m32 - m22 * m30;
610        let a0123 = m20 * m31 - m21 * m30;
611
612        m00 * (m11 * a2323 - m12 * a1323 + m13 * a1223)
613            - m01 * (m10 * a2323 - m12 * a0323 + m13 * a0223)
614            + m02 * (m10 * a1323 - m11 * a0323 + m13 * a0123)
615            - m03 * (m10 * a1223 - m11 * a0223 + m12 * a0123)
616    }
617
618    /// Returns the inverse of `self`.
619    ///
620    /// If the matrix is not invertible the returned matrix will be invalid.
621    ///
622    /// # Panics
623    ///
624    /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
625    #[must_use]
626    pub fn inverse(&self) -> Self {
627        let (m00, m01, m02, m03) = self.x_axis.into();
628        let (m10, m11, m12, m13) = self.y_axis.into();
629        let (m20, m21, m22, m23) = self.z_axis.into();
630        let (m30, m31, m32, m33) = self.w_axis.into();
631
632        let coef00 = m22 * m33 - m32 * m23;
633        let coef02 = m12 * m33 - m32 * m13;
634        let coef03 = m12 * m23 - m22 * m13;
635
636        let coef04 = m21 * m33 - m31 * m23;
637        let coef06 = m11 * m33 - m31 * m13;
638        let coef07 = m11 * m23 - m21 * m13;
639
640        let coef08 = m21 * m32 - m31 * m22;
641        let coef10 = m11 * m32 - m31 * m12;
642        let coef11 = m11 * m22 - m21 * m12;
643
644        let coef12 = m20 * m33 - m30 * m23;
645        let coef14 = m10 * m33 - m30 * m13;
646        let coef15 = m10 * m23 - m20 * m13;
647
648        let coef16 = m20 * m32 - m30 * m22;
649        let coef18 = m10 * m32 - m30 * m12;
650        let coef19 = m10 * m22 - m20 * m12;
651
652        let coef20 = m20 * m31 - m30 * m21;
653        let coef22 = m10 * m31 - m30 * m11;
654        let coef23 = m10 * m21 - m20 * m11;
655
656        let fac0 = DVec4::new(coef00, coef00, coef02, coef03);
657        let fac1 = DVec4::new(coef04, coef04, coef06, coef07);
658        let fac2 = DVec4::new(coef08, coef08, coef10, coef11);
659        let fac3 = DVec4::new(coef12, coef12, coef14, coef15);
660        let fac4 = DVec4::new(coef16, coef16, coef18, coef19);
661        let fac5 = DVec4::new(coef20, coef20, coef22, coef23);
662
663        let vec0 = DVec4::new(m10, m00, m00, m00);
664        let vec1 = DVec4::new(m11, m01, m01, m01);
665        let vec2 = DVec4::new(m12, m02, m02, m02);
666        let vec3 = DVec4::new(m13, m03, m03, m03);
667
668        let inv0 = vec1.mul(fac0).sub(vec2.mul(fac1)).add(vec3.mul(fac2));
669        let inv1 = vec0.mul(fac0).sub(vec2.mul(fac3)).add(vec3.mul(fac4));
670        let inv2 = vec0.mul(fac1).sub(vec1.mul(fac3)).add(vec3.mul(fac5));
671        let inv3 = vec0.mul(fac2).sub(vec1.mul(fac4)).add(vec2.mul(fac5));
672
673        let sign_a = DVec4::new(1.0, -1.0, 1.0, -1.0);
674        let sign_b = DVec4::new(-1.0, 1.0, -1.0, 1.0);
675
676        let inverse = Self::from_cols(
677            inv0.mul(sign_a),
678            inv1.mul(sign_b),
679            inv2.mul(sign_a),
680            inv3.mul(sign_b),
681        );
682
683        let col0 = DVec4::new(
684            inverse.x_axis.x,
685            inverse.y_axis.x,
686            inverse.z_axis.x,
687            inverse.w_axis.x,
688        );
689
690        let dot0 = self.x_axis.mul(col0);
691        let dot1 = dot0.x + dot0.y + dot0.z + dot0.w;
692
693        glam_assert!(dot1 != 0.0);
694
695        let rcp_det = dot1.recip();
696        inverse.mul(rcp_det)
697    }
698
699    /// Creates a left-handed view matrix using a camera position, an up direction, and a facing
700    /// direction.
701    ///
702    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
703    #[inline]
704    #[must_use]
705    pub fn look_to_lh(eye: DVec3, dir: DVec3, up: DVec3) -> Self {
706        Self::look_to_rh(eye, -dir, up)
707    }
708
709    /// Creates a right-handed view matrix using a camera position, an up direction, and a facing
710    /// direction.
711    ///
712    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
713    #[inline]
714    #[must_use]
715    pub fn look_to_rh(eye: DVec3, dir: DVec3, up: DVec3) -> Self {
716        let f = dir.normalize();
717        let s = f.cross(up).normalize();
718        let u = s.cross(f);
719
720        Self::from_cols(
721            DVec4::new(s.x, u.x, -f.x, 0.0),
722            DVec4::new(s.y, u.y, -f.y, 0.0),
723            DVec4::new(s.z, u.z, -f.z, 0.0),
724            DVec4::new(-eye.dot(s), -eye.dot(u), eye.dot(f), 1.0),
725        )
726    }
727
728    /// Creates a left-handed view matrix using a camera position, an up direction, and a focal
729    /// point.
730    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
731    ///
732    /// # Panics
733    ///
734    /// Will panic if `up` is not normalized when `glam_assert` is enabled.
735    #[inline]
736    #[must_use]
737    pub fn look_at_lh(eye: DVec3, center: DVec3, up: DVec3) -> Self {
738        glam_assert!(up.is_normalized());
739        Self::look_to_lh(eye, center.sub(eye), up)
740    }
741
742    /// Creates a right-handed view matrix using a camera position, an up direction, and a focal
743    /// point.
744    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
745    ///
746    /// # Panics
747    ///
748    /// Will panic if `up` is not normalized when `glam_assert` is enabled.
749    #[inline]
750    pub fn look_at_rh(eye: DVec3, center: DVec3, up: DVec3) -> Self {
751        glam_assert!(up.is_normalized());
752        Self::look_to_rh(eye, center.sub(eye), up)
753    }
754
755    /// Creates a right-handed perspective projection matrix with `[-1,1]` depth range.
756    ///
757    /// Useful to map the standard right-handed coordinate system into what OpenGL expects.
758    ///
759    /// This is the same as the OpenGL `gluPerspective` function.
760    /// See <https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml>
761    #[inline]
762    #[must_use]
763    pub fn perspective_rh_gl(
764        fov_y_radians: f64,
765        aspect_ratio: f64,
766        z_near: f64,
767        z_far: f64,
768    ) -> Self {
769        let inv_length = 1.0 / (z_near - z_far);
770        let f = 1.0 / math::tan(0.5 * fov_y_radians);
771        let a = f / aspect_ratio;
772        let b = (z_near + z_far) * inv_length;
773        let c = (2.0 * z_near * z_far) * inv_length;
774        Self::from_cols(
775            DVec4::new(a, 0.0, 0.0, 0.0),
776            DVec4::new(0.0, f, 0.0, 0.0),
777            DVec4::new(0.0, 0.0, b, -1.0),
778            DVec4::new(0.0, 0.0, c, 0.0),
779        )
780    }
781
782    /// Creates a left-handed perspective projection matrix with `[0,1]` depth range.
783    ///
784    /// Useful to map the standard left-handed coordinate system into what WebGPU/Metal/Direct3D expect.
785    ///
786    /// # Panics
787    ///
788    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
789    /// enabled.
790    #[inline]
791    #[must_use]
792    pub fn perspective_lh(fov_y_radians: f64, aspect_ratio: f64, z_near: f64, z_far: f64) -> Self {
793        glam_assert!(z_near > 0.0 && z_far > 0.0);
794        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
795        let h = cos_fov / sin_fov;
796        let w = h / aspect_ratio;
797        let r = z_far / (z_far - z_near);
798        Self::from_cols(
799            DVec4::new(w, 0.0, 0.0, 0.0),
800            DVec4::new(0.0, h, 0.0, 0.0),
801            DVec4::new(0.0, 0.0, r, 1.0),
802            DVec4::new(0.0, 0.0, -r * z_near, 0.0),
803        )
804    }
805
806    /// Creates a right-handed perspective projection matrix with `[0,1]` depth range.
807    ///
808    /// Useful to map the standard right-handed coordinate system into what WebGPU/Metal/Direct3D expect.
809    ///
810    /// # Panics
811    ///
812    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
813    /// enabled.
814    #[inline]
815    #[must_use]
816    pub fn perspective_rh(fov_y_radians: f64, aspect_ratio: f64, z_near: f64, z_far: f64) -> Self {
817        glam_assert!(z_near > 0.0 && z_far > 0.0);
818        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
819        let h = cos_fov / sin_fov;
820        let w = h / aspect_ratio;
821        let r = z_far / (z_near - z_far);
822        Self::from_cols(
823            DVec4::new(w, 0.0, 0.0, 0.0),
824            DVec4::new(0.0, h, 0.0, 0.0),
825            DVec4::new(0.0, 0.0, r, -1.0),
826            DVec4::new(0.0, 0.0, r * z_near, 0.0),
827        )
828    }
829
830    /// Creates an infinite left-handed perspective projection matrix with `[0,1]` depth range.
831    ///
832    /// Like `perspective_lh`, but with an infinite value for `z_far`.
833    /// The result is that points near `z_near` are mapped to depth `0`, and as they move towards infinity the depth approaches `1`.
834    ///
835    /// # Panics
836    ///
837    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
838    /// enabled.
839    #[inline]
840    #[must_use]
841    pub fn perspective_infinite_lh(fov_y_radians: f64, aspect_ratio: f64, z_near: f64) -> Self {
842        glam_assert!(z_near > 0.0);
843        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
844        let h = cos_fov / sin_fov;
845        let w = h / aspect_ratio;
846        Self::from_cols(
847            DVec4::new(w, 0.0, 0.0, 0.0),
848            DVec4::new(0.0, h, 0.0, 0.0),
849            DVec4::new(0.0, 0.0, 1.0, 1.0),
850            DVec4::new(0.0, 0.0, -z_near, 0.0),
851        )
852    }
853
854    /// Creates an infinite reverse left-handed perspective projection matrix with `[0,1]` depth range.
855    ///
856    /// Similar to `perspective_infinite_lh`, but maps `Z = z_near` to a depth of `1` and `Z = infinity` to a depth of `0`.
857    ///
858    /// # Panics
859    ///
860    /// Will panic if `z_near` is less than or equal to zero when `glam_assert` is enabled.
861    #[inline]
862    #[must_use]
863    pub fn perspective_infinite_reverse_lh(
864        fov_y_radians: f64,
865        aspect_ratio: f64,
866        z_near: f64,
867    ) -> Self {
868        glam_assert!(z_near > 0.0);
869        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
870        let h = cos_fov / sin_fov;
871        let w = h / aspect_ratio;
872        Self::from_cols(
873            DVec4::new(w, 0.0, 0.0, 0.0),
874            DVec4::new(0.0, h, 0.0, 0.0),
875            DVec4::new(0.0, 0.0, 0.0, 1.0),
876            DVec4::new(0.0, 0.0, z_near, 0.0),
877        )
878    }
879
880    /// Creates an infinite right-handed perspective projection matrix with `[0,1]` depth range.
881    ///
882    /// Like `perspective_rh`, but with an infinite value for `z_far`.
883    /// The result is that points near `z_near` are mapped to depth `0`, and as they move towards infinity the depth approaches `1`.
884    ///
885    /// # Panics
886    ///
887    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
888    /// enabled.
889    #[inline]
890    #[must_use]
891    pub fn perspective_infinite_rh(fov_y_radians: f64, aspect_ratio: f64, z_near: f64) -> Self {
892        glam_assert!(z_near > 0.0);
893        let f = 1.0 / math::tan(0.5 * fov_y_radians);
894        Self::from_cols(
895            DVec4::new(f / aspect_ratio, 0.0, 0.0, 0.0),
896            DVec4::new(0.0, f, 0.0, 0.0),
897            DVec4::new(0.0, 0.0, -1.0, -1.0),
898            DVec4::new(0.0, 0.0, -z_near, 0.0),
899        )
900    }
901
902    /// Creates an infinite reverse right-handed perspective projection matrix with `[0,1]` depth range.
903    ///
904    /// Similar to `perspective_infinite_rh`, but maps `Z = z_near` to a depth of `1` and `Z = infinity` to a depth of `0`.
905    ///
906    /// # Panics
907    ///
908    /// Will panic if `z_near` is less than or equal to zero when `glam_assert` is enabled.
909    #[inline]
910    #[must_use]
911    pub fn perspective_infinite_reverse_rh(
912        fov_y_radians: f64,
913        aspect_ratio: f64,
914        z_near: f64,
915    ) -> Self {
916        glam_assert!(z_near > 0.0);
917        let f = 1.0 / math::tan(0.5 * fov_y_radians);
918        Self::from_cols(
919            DVec4::new(f / aspect_ratio, 0.0, 0.0, 0.0),
920            DVec4::new(0.0, f, 0.0, 0.0),
921            DVec4::new(0.0, 0.0, 0.0, -1.0),
922            DVec4::new(0.0, 0.0, z_near, 0.0),
923        )
924    }
925
926    /// Creates a right-handed orthographic projection matrix with `[-1,1]` depth
927    /// range.  This is the same as the OpenGL `glOrtho` function in OpenGL.
928    /// See
929    /// <https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml>
930    ///
931    /// Useful to map a right-handed coordinate system to the normalized device coordinates that OpenGL expects.
932    #[inline]
933    #[must_use]
934    pub fn orthographic_rh_gl(
935        left: f64,
936        right: f64,
937        bottom: f64,
938        top: f64,
939        near: f64,
940        far: f64,
941    ) -> Self {
942        let a = 2.0 / (right - left);
943        let b = 2.0 / (top - bottom);
944        let c = -2.0 / (far - near);
945        let tx = -(right + left) / (right - left);
946        let ty = -(top + bottom) / (top - bottom);
947        let tz = -(far + near) / (far - near);
948
949        Self::from_cols(
950            DVec4::new(a, 0.0, 0.0, 0.0),
951            DVec4::new(0.0, b, 0.0, 0.0),
952            DVec4::new(0.0, 0.0, c, 0.0),
953            DVec4::new(tx, ty, tz, 1.0),
954        )
955    }
956
957    /// Creates a left-handed orthographic projection matrix with `[0,1]` depth range.
958    ///
959    /// Useful to map a left-handed coordinate system to the normalized device coordinates that WebGPU/Direct3D/Metal expect.
960    #[inline]
961    #[must_use]
962    pub fn orthographic_lh(
963        left: f64,
964        right: f64,
965        bottom: f64,
966        top: f64,
967        near: f64,
968        far: f64,
969    ) -> Self {
970        let rcp_width = 1.0 / (right - left);
971        let rcp_height = 1.0 / (top - bottom);
972        let r = 1.0 / (far - near);
973        Self::from_cols(
974            DVec4::new(rcp_width + rcp_width, 0.0, 0.0, 0.0),
975            DVec4::new(0.0, rcp_height + rcp_height, 0.0, 0.0),
976            DVec4::new(0.0, 0.0, r, 0.0),
977            DVec4::new(
978                -(left + right) * rcp_width,
979                -(top + bottom) * rcp_height,
980                -r * near,
981                1.0,
982            ),
983        )
984    }
985
986    /// Creates a right-handed orthographic projection matrix with `[0,1]` depth range.
987    ///
988    /// Useful to map a right-handed coordinate system to the normalized device coordinates that WebGPU/Direct3D/Metal expect.
989    #[inline]
990    #[must_use]
991    pub fn orthographic_rh(
992        left: f64,
993        right: f64,
994        bottom: f64,
995        top: f64,
996        near: f64,
997        far: f64,
998    ) -> Self {
999        let rcp_width = 1.0 / (right - left);
1000        let rcp_height = 1.0 / (top - bottom);
1001        let r = 1.0 / (near - far);
1002        Self::from_cols(
1003            DVec4::new(rcp_width + rcp_width, 0.0, 0.0, 0.0),
1004            DVec4::new(0.0, rcp_height + rcp_height, 0.0, 0.0),
1005            DVec4::new(0.0, 0.0, r, 0.0),
1006            DVec4::new(
1007                -(left + right) * rcp_width,
1008                -(top + bottom) * rcp_height,
1009                r * near,
1010                1.0,
1011            ),
1012        )
1013    }
1014
1015    /// Transforms the given 3D vector as a point, applying perspective correction.
1016    ///
1017    /// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is `1.0`.
1018    /// The perspective divide is performed meaning the resulting 3D vector is divided by `w`.
1019    ///
1020    /// This method assumes that `self` contains a projective transform.
1021    #[inline]
1022    #[must_use]
1023    pub fn project_point3(&self, rhs: DVec3) -> DVec3 {
1024        let mut res = self.x_axis.mul(rhs.x);
1025        res = self.y_axis.mul(rhs.y).add(res);
1026        res = self.z_axis.mul(rhs.z).add(res);
1027        res = self.w_axis.add(res);
1028        res = res.div(res.w);
1029        res.xyz()
1030    }
1031
1032    /// Transforms the given 3D vector as a point.
1033    ///
1034    /// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is
1035    /// `1.0`.
1036    ///
1037    /// This method assumes that `self` contains a valid affine transform. It does not perform
1038    /// a perspective divide, if `self` contains a perspective transform, or if you are unsure,
1039    /// the [`Self::project_point3()`] method should be used instead.
1040    ///
1041    /// # Panics
1042    ///
1043    /// Will panic if the 3rd row of `self` is not `(0, 0, 0, 1)` when `glam_assert` is enabled.
1044    #[inline]
1045    #[must_use]
1046    pub fn transform_point3(&self, rhs: DVec3) -> DVec3 {
1047        glam_assert!(self.row(3).abs_diff_eq(DVec4::W, 1e-6));
1048        let mut res = self.x_axis.mul(rhs.x);
1049        res = self.y_axis.mul(rhs.y).add(res);
1050        res = self.z_axis.mul(rhs.z).add(res);
1051        res = self.w_axis.add(res);
1052        res.xyz()
1053    }
1054
1055    /// Transforms the give 3D vector as a direction.
1056    ///
1057    /// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is
1058    /// `0.0`.
1059    ///
1060    /// This method assumes that `self` contains a valid affine transform.
1061    ///
1062    /// # Panics
1063    ///
1064    /// Will panic if the 3rd row of `self` is not `(0, 0, 0, 1)` when `glam_assert` is enabled.
1065    #[inline]
1066    #[must_use]
1067    pub fn transform_vector3(&self, rhs: DVec3) -> DVec3 {
1068        glam_assert!(self.row(3).abs_diff_eq(DVec4::W, 1e-6));
1069        let mut res = self.x_axis.mul(rhs.x);
1070        res = self.y_axis.mul(rhs.y).add(res);
1071        res = self.z_axis.mul(rhs.z).add(res);
1072        res.xyz()
1073    }
1074
1075    /// Transforms a 4D vector.
1076    #[inline]
1077    #[must_use]
1078    pub fn mul_vec4(&self, rhs: DVec4) -> DVec4 {
1079        let mut res = self.x_axis.mul(rhs.x);
1080        res = res.add(self.y_axis.mul(rhs.y));
1081        res = res.add(self.z_axis.mul(rhs.z));
1082        res = res.add(self.w_axis.mul(rhs.w));
1083        res
1084    }
1085
1086    /// Multiplies two 4x4 matrices.
1087    #[inline]
1088    #[must_use]
1089    pub fn mul_mat4(&self, rhs: &Self) -> Self {
1090        Self::from_cols(
1091            self.mul(rhs.x_axis),
1092            self.mul(rhs.y_axis),
1093            self.mul(rhs.z_axis),
1094            self.mul(rhs.w_axis),
1095        )
1096    }
1097
1098    /// Adds two 4x4 matrices.
1099    #[inline]
1100    #[must_use]
1101    pub fn add_mat4(&self, rhs: &Self) -> Self {
1102        Self::from_cols(
1103            self.x_axis.add(rhs.x_axis),
1104            self.y_axis.add(rhs.y_axis),
1105            self.z_axis.add(rhs.z_axis),
1106            self.w_axis.add(rhs.w_axis),
1107        )
1108    }
1109
1110    /// Subtracts two 4x4 matrices.
1111    #[inline]
1112    #[must_use]
1113    pub fn sub_mat4(&self, rhs: &Self) -> Self {
1114        Self::from_cols(
1115            self.x_axis.sub(rhs.x_axis),
1116            self.y_axis.sub(rhs.y_axis),
1117            self.z_axis.sub(rhs.z_axis),
1118            self.w_axis.sub(rhs.w_axis),
1119        )
1120    }
1121
1122    /// Multiplies a 4x4 matrix by a scalar.
1123    #[inline]
1124    #[must_use]
1125    pub fn mul_scalar(&self, rhs: f64) -> Self {
1126        Self::from_cols(
1127            self.x_axis.mul(rhs),
1128            self.y_axis.mul(rhs),
1129            self.z_axis.mul(rhs),
1130            self.w_axis.mul(rhs),
1131        )
1132    }
1133
1134    /// Divides a 4x4 matrix by a scalar.
1135    #[inline]
1136    #[must_use]
1137    pub fn div_scalar(&self, rhs: f64) -> Self {
1138        let rhs = DVec4::splat(rhs);
1139        Self::from_cols(
1140            self.x_axis.div(rhs),
1141            self.y_axis.div(rhs),
1142            self.z_axis.div(rhs),
1143            self.w_axis.div(rhs),
1144        )
1145    }
1146
1147    /// Returns true if the absolute difference of all elements between `self` and `rhs`
1148    /// is less than or equal to `max_abs_diff`.
1149    ///
1150    /// This can be used to compare if two matrices contain similar elements. It works best
1151    /// when comparing with a known value. The `max_abs_diff` that should be used used
1152    /// depends on the values being compared against.
1153    ///
1154    /// For more see
1155    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
1156    #[inline]
1157    #[must_use]
1158    pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool {
1159        self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
1160            && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
1161            && self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
1162            && self.w_axis.abs_diff_eq(rhs.w_axis, max_abs_diff)
1163    }
1164
1165    /// Takes the absolute value of each element in `self`
1166    #[inline]
1167    #[must_use]
1168    pub fn abs(&self) -> Self {
1169        Self::from_cols(
1170            self.x_axis.abs(),
1171            self.y_axis.abs(),
1172            self.z_axis.abs(),
1173            self.w_axis.abs(),
1174        )
1175    }
1176
1177    #[inline]
1178    pub fn as_mat4(&self) -> Mat4 {
1179        Mat4::from_cols(
1180            self.x_axis.as_vec4(),
1181            self.y_axis.as_vec4(),
1182            self.z_axis.as_vec4(),
1183            self.w_axis.as_vec4(),
1184        )
1185    }
1186}
1187
1188impl Default for DMat4 {
1189    #[inline]
1190    fn default() -> Self {
1191        Self::IDENTITY
1192    }
1193}
1194
1195impl Add<DMat4> for DMat4 {
1196    type Output = Self;
1197    #[inline]
1198    fn add(self, rhs: Self) -> Self::Output {
1199        self.add_mat4(&rhs)
1200    }
1201}
1202
1203impl AddAssign<DMat4> for DMat4 {
1204    #[inline]
1205    fn add_assign(&mut self, rhs: Self) {
1206        *self = self.add_mat4(&rhs);
1207    }
1208}
1209
1210impl Sub<DMat4> for DMat4 {
1211    type Output = Self;
1212    #[inline]
1213    fn sub(self, rhs: Self) -> Self::Output {
1214        self.sub_mat4(&rhs)
1215    }
1216}
1217
1218impl SubAssign<DMat4> for DMat4 {
1219    #[inline]
1220    fn sub_assign(&mut self, rhs: Self) {
1221        *self = self.sub_mat4(&rhs);
1222    }
1223}
1224
1225impl Neg for DMat4 {
1226    type Output = Self;
1227    #[inline]
1228    fn neg(self) -> Self::Output {
1229        Self::from_cols(
1230            self.x_axis.neg(),
1231            self.y_axis.neg(),
1232            self.z_axis.neg(),
1233            self.w_axis.neg(),
1234        )
1235    }
1236}
1237
1238impl Mul<DMat4> for DMat4 {
1239    type Output = Self;
1240    #[inline]
1241    fn mul(self, rhs: Self) -> Self::Output {
1242        self.mul_mat4(&rhs)
1243    }
1244}
1245
1246impl MulAssign<DMat4> for DMat4 {
1247    #[inline]
1248    fn mul_assign(&mut self, rhs: Self) {
1249        *self = self.mul_mat4(&rhs);
1250    }
1251}
1252
1253impl Mul<DVec4> for DMat4 {
1254    type Output = DVec4;
1255    #[inline]
1256    fn mul(self, rhs: DVec4) -> Self::Output {
1257        self.mul_vec4(rhs)
1258    }
1259}
1260
1261impl Mul<DMat4> for f64 {
1262    type Output = DMat4;
1263    #[inline]
1264    fn mul(self, rhs: DMat4) -> Self::Output {
1265        rhs.mul_scalar(self)
1266    }
1267}
1268
1269impl Mul<f64> for DMat4 {
1270    type Output = Self;
1271    #[inline]
1272    fn mul(self, rhs: f64) -> Self::Output {
1273        self.mul_scalar(rhs)
1274    }
1275}
1276
1277impl MulAssign<f64> for DMat4 {
1278    #[inline]
1279    fn mul_assign(&mut self, rhs: f64) {
1280        *self = self.mul_scalar(rhs);
1281    }
1282}
1283
1284impl Div<DMat4> for f64 {
1285    type Output = DMat4;
1286    #[inline]
1287    fn div(self, rhs: DMat4) -> Self::Output {
1288        rhs.div_scalar(self)
1289    }
1290}
1291
1292impl Div<f64> for DMat4 {
1293    type Output = Self;
1294    #[inline]
1295    fn div(self, rhs: f64) -> Self::Output {
1296        self.div_scalar(rhs)
1297    }
1298}
1299
1300impl DivAssign<f64> for DMat4 {
1301    #[inline]
1302    fn div_assign(&mut self, rhs: f64) {
1303        *self = self.div_scalar(rhs);
1304    }
1305}
1306
1307impl Sum<Self> for DMat4 {
1308    fn sum<I>(iter: I) -> Self
1309    where
1310        I: Iterator<Item = Self>,
1311    {
1312        iter.fold(Self::ZERO, Self::add)
1313    }
1314}
1315
1316impl<'a> Sum<&'a Self> for DMat4 {
1317    fn sum<I>(iter: I) -> Self
1318    where
1319        I: Iterator<Item = &'a Self>,
1320    {
1321        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
1322    }
1323}
1324
1325impl Product for DMat4 {
1326    fn product<I>(iter: I) -> Self
1327    where
1328        I: Iterator<Item = Self>,
1329    {
1330        iter.fold(Self::IDENTITY, Self::mul)
1331    }
1332}
1333
1334impl<'a> Product<&'a Self> for DMat4 {
1335    fn product<I>(iter: I) -> Self
1336    where
1337        I: Iterator<Item = &'a Self>,
1338    {
1339        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
1340    }
1341}
1342
1343impl PartialEq for DMat4 {
1344    #[inline]
1345    fn eq(&self, rhs: &Self) -> bool {
1346        self.x_axis.eq(&rhs.x_axis)
1347            && self.y_axis.eq(&rhs.y_axis)
1348            && self.z_axis.eq(&rhs.z_axis)
1349            && self.w_axis.eq(&rhs.w_axis)
1350    }
1351}
1352
1353#[cfg(not(target_arch = "spirv"))]
1354impl AsRef<[f64; 16]> for DMat4 {
1355    #[inline]
1356    fn as_ref(&self) -> &[f64; 16] {
1357        unsafe { &*(self as *const Self as *const [f64; 16]) }
1358    }
1359}
1360
1361#[cfg(not(target_arch = "spirv"))]
1362impl AsMut<[f64; 16]> for DMat4 {
1363    #[inline]
1364    fn as_mut(&mut self) -> &mut [f64; 16] {
1365        unsafe { &mut *(self as *mut Self as *mut [f64; 16]) }
1366    }
1367}
1368
1369impl fmt::Debug for DMat4 {
1370    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1371        fmt.debug_struct(stringify!(DMat4))
1372            .field("x_axis", &self.x_axis)
1373            .field("y_axis", &self.y_axis)
1374            .field("z_axis", &self.z_axis)
1375            .field("w_axis", &self.w_axis)
1376            .finish()
1377    }
1378}
1379
1380impl fmt::Display for DMat4 {
1381    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1382        if let Some(p) = f.precision() {
1383            write!(
1384                f,
1385                "[{:.*}, {:.*}, {:.*}, {:.*}]",
1386                p, self.x_axis, p, self.y_axis, p, self.z_axis, p, self.w_axis
1387            )
1388        } else {
1389            write!(
1390                f,
1391                "[{}, {}, {}, {}]",
1392                self.x_axis, self.y_axis, self.z_axis, self.w_axis
1393            )
1394        }
1395    }
1396}