glam/f64/
dquat.rs

1// Generated from quat.rs.tera template. Edit the template, not the generated file.
2
3use crate::{
4    euler::{EulerRot, FromEuler, ToEuler},
5    f64::math,
6    DMat3, DMat4, DVec2, DVec3, DVec4, Quat,
7};
8
9use core::fmt;
10use core::iter::{Product, Sum};
11use core::ops::{Add, Div, Mul, MulAssign, Neg, Sub};
12
13/// Creates a quaternion from `x`, `y`, `z` and `w` values.
14///
15/// This should generally not be called manually unless you know what you are doing. Use
16/// one of the other constructors instead such as `identity` or `from_axis_angle`.
17#[inline]
18#[must_use]
19pub const fn dquat(x: f64, y: f64, z: f64, w: f64) -> DQuat {
20    DQuat::from_xyzw(x, y, z, w)
21}
22
23/// A quaternion representing an orientation.
24///
25/// This quaternion is intended to be of unit length but may denormalize due to
26/// floating point "error creep" which can occur when successive quaternion
27/// operations are applied.
28#[derive(Clone, Copy)]
29#[cfg_attr(not(target_arch = "spirv"), repr(C))]
30#[cfg_attr(target_arch = "spirv", repr(simd))]
31pub struct DQuat {
32    pub x: f64,
33    pub y: f64,
34    pub z: f64,
35    pub w: f64,
36}
37
38impl DQuat {
39    /// All zeros.
40    const ZERO: Self = Self::from_array([0.0; 4]);
41
42    /// The identity quaternion. Corresponds to no rotation.
43    pub const IDENTITY: Self = Self::from_xyzw(0.0, 0.0, 0.0, 1.0);
44
45    /// All NANs.
46    pub const NAN: Self = Self::from_array([f64::NAN; 4]);
47
48    /// Creates a new rotation quaternion.
49    ///
50    /// This should generally not be called manually unless you know what you are doing.
51    /// Use one of the other constructors instead such as `identity` or `from_axis_angle`.
52    ///
53    /// `from_xyzw` is mostly used by unit tests and `serde` deserialization.
54    ///
55    /// # Preconditions
56    ///
57    /// This function does not check if the input is normalized, it is up to the user to
58    /// provide normalized input or to normalized the resulting quaternion.
59    #[inline(always)]
60    #[must_use]
61    pub const fn from_xyzw(x: f64, y: f64, z: f64, w: f64) -> Self {
62        Self { x, y, z, w }
63    }
64
65    /// Creates a rotation quaternion from an array.
66    ///
67    /// # Preconditions
68    ///
69    /// This function does not check if the input is normalized, it is up to the user to
70    /// provide normalized input or to normalized the resulting quaternion.
71    #[inline]
72    #[must_use]
73    pub const fn from_array(a: [f64; 4]) -> Self {
74        Self::from_xyzw(a[0], a[1], a[2], a[3])
75    }
76
77    /// Creates a new rotation quaternion from a 4D vector.
78    ///
79    /// # Preconditions
80    ///
81    /// This function does not check if the input is normalized, it is up to the user to
82    /// provide normalized input or to normalized the resulting quaternion.
83    #[inline]
84    #[must_use]
85    pub const fn from_vec4(v: DVec4) -> Self {
86        Self {
87            x: v.x,
88            y: v.y,
89            z: v.z,
90            w: v.w,
91        }
92    }
93
94    /// Creates a rotation quaternion from a slice.
95    ///
96    /// # Preconditions
97    ///
98    /// This function does not check if the input is normalized, it is up to the user to
99    /// provide normalized input or to normalized the resulting quaternion.
100    ///
101    /// # Panics
102    ///
103    /// Panics if `slice` length is less than 4.
104    #[inline]
105    #[must_use]
106    pub fn from_slice(slice: &[f64]) -> Self {
107        Self::from_xyzw(slice[0], slice[1], slice[2], slice[3])
108    }
109
110    /// Writes the quaternion to an unaligned slice.
111    ///
112    /// # Panics
113    ///
114    /// Panics if `slice` length is less than 4.
115    #[inline]
116    pub fn write_to_slice(self, slice: &mut [f64]) {
117        slice[0] = self.x;
118        slice[1] = self.y;
119        slice[2] = self.z;
120        slice[3] = self.w;
121    }
122
123    /// Create a quaternion for a normalized rotation `axis` and `angle` (in radians).
124    ///
125    /// The axis must be a unit vector.
126    ///
127    /// # Panics
128    ///
129    /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
130    #[inline]
131    #[must_use]
132    pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self {
133        glam_assert!(axis.is_normalized());
134        let (s, c) = math::sin_cos(angle * 0.5);
135        let v = axis * s;
136        Self::from_xyzw(v.x, v.y, v.z, c)
137    }
138
139    /// Create a quaternion that rotates `v.length()` radians around `v.normalize()`.
140    ///
141    /// `from_scaled_axis(Vec3::ZERO)` results in the identity quaternion.
142    #[inline]
143    #[must_use]
144    pub fn from_scaled_axis(v: DVec3) -> Self {
145        let length = v.length();
146        if length == 0.0 {
147            Self::IDENTITY
148        } else {
149            Self::from_axis_angle(v / length, length)
150        }
151    }
152
153    /// Creates a quaternion from the `angle` (in radians) around the x axis.
154    #[inline]
155    #[must_use]
156    pub fn from_rotation_x(angle: f64) -> Self {
157        let (s, c) = math::sin_cos(angle * 0.5);
158        Self::from_xyzw(s, 0.0, 0.0, c)
159    }
160
161    /// Creates a quaternion from the `angle` (in radians) around the y axis.
162    #[inline]
163    #[must_use]
164    pub fn from_rotation_y(angle: f64) -> Self {
165        let (s, c) = math::sin_cos(angle * 0.5);
166        Self::from_xyzw(0.0, s, 0.0, c)
167    }
168
169    /// Creates a quaternion from the `angle` (in radians) around the z axis.
170    #[inline]
171    #[must_use]
172    pub fn from_rotation_z(angle: f64) -> Self {
173        let (s, c) = math::sin_cos(angle * 0.5);
174        Self::from_xyzw(0.0, 0.0, s, c)
175    }
176
177    /// Creates a quaternion from the given Euler rotation sequence and the angles (in radians).
178    #[inline]
179    #[must_use]
180    pub fn from_euler(euler: EulerRot, a: f64, b: f64, c: f64) -> Self {
181        Self::from_euler_angles(euler, a, b, c)
182    }
183
184    /// From the columns of a 3x3 rotation matrix.
185    ///
186    /// Note if the input axes contain scales, shears, or other non-rotation transformations then
187    /// the output of this function is ill-defined.
188    ///
189    /// # Panics
190    ///
191    /// Will panic if any axis is not normalized when `glam_assert` is enabled.
192    #[inline]
193    #[must_use]
194    pub(crate) fn from_rotation_axes(x_axis: DVec3, y_axis: DVec3, z_axis: DVec3) -> Self {
195        glam_assert!(x_axis.is_normalized() && y_axis.is_normalized() && z_axis.is_normalized());
196        // Based on https://github.com/microsoft/DirectXMath `XMQuaternionRotationMatrix`
197        let (m00, m01, m02) = x_axis.into();
198        let (m10, m11, m12) = y_axis.into();
199        let (m20, m21, m22) = z_axis.into();
200        if m22 <= 0.0 {
201            // x^2 + y^2 >= z^2 + w^2
202            let dif10 = m11 - m00;
203            let omm22 = 1.0 - m22;
204            if dif10 <= 0.0 {
205                // x^2 >= y^2
206                let four_xsq = omm22 - dif10;
207                let inv4x = 0.5 / math::sqrt(four_xsq);
208                Self::from_xyzw(
209                    four_xsq * inv4x,
210                    (m01 + m10) * inv4x,
211                    (m02 + m20) * inv4x,
212                    (m12 - m21) * inv4x,
213                )
214            } else {
215                // y^2 >= x^2
216                let four_ysq = omm22 + dif10;
217                let inv4y = 0.5 / math::sqrt(four_ysq);
218                Self::from_xyzw(
219                    (m01 + m10) * inv4y,
220                    four_ysq * inv4y,
221                    (m12 + m21) * inv4y,
222                    (m20 - m02) * inv4y,
223                )
224            }
225        } else {
226            // z^2 + w^2 >= x^2 + y^2
227            let sum10 = m11 + m00;
228            let opm22 = 1.0 + m22;
229            if sum10 <= 0.0 {
230                // z^2 >= w^2
231                let four_zsq = opm22 - sum10;
232                let inv4z = 0.5 / math::sqrt(four_zsq);
233                Self::from_xyzw(
234                    (m02 + m20) * inv4z,
235                    (m12 + m21) * inv4z,
236                    four_zsq * inv4z,
237                    (m01 - m10) * inv4z,
238                )
239            } else {
240                // w^2 >= z^2
241                let four_wsq = opm22 + sum10;
242                let inv4w = 0.5 / math::sqrt(four_wsq);
243                Self::from_xyzw(
244                    (m12 - m21) * inv4w,
245                    (m20 - m02) * inv4w,
246                    (m01 - m10) * inv4w,
247                    four_wsq * inv4w,
248                )
249            }
250        }
251    }
252
253    /// Creates a quaternion from a 3x3 rotation matrix.
254    ///
255    /// Note if the input matrix contain scales, shears, or other non-rotation transformations then
256    /// the resulting quaternion will be ill-defined.
257    ///
258    /// # Panics
259    ///
260    /// Will panic if any input matrix column is not normalized when `glam_assert` is enabled.
261    #[inline]
262    #[must_use]
263    pub fn from_mat3(mat: &DMat3) -> Self {
264        Self::from_rotation_axes(mat.x_axis, mat.y_axis, mat.z_axis)
265    }
266
267    /// Creates a quaternion from the upper 3x3 rotation matrix inside a homogeneous 4x4 matrix.
268    ///
269    /// Note if the upper 3x3 matrix contain scales, shears, or other non-rotation transformations
270    /// then the resulting quaternion will be ill-defined.
271    ///
272    /// # Panics
273    ///
274    /// Will panic if any column of the upper 3x3 rotation matrix is not normalized when
275    /// `glam_assert` is enabled.
276    #[inline]
277    #[must_use]
278    pub fn from_mat4(mat: &DMat4) -> Self {
279        Self::from_rotation_axes(
280            mat.x_axis.truncate(),
281            mat.y_axis.truncate(),
282            mat.z_axis.truncate(),
283        )
284    }
285
286    /// Gets the minimal rotation for transforming `from` to `to`.  The rotation is in the
287    /// plane spanned by the two vectors.  Will rotate at most 180 degrees.
288    ///
289    /// The inputs must be unit vectors.
290    ///
291    /// `from_rotation_arc(from, to) * from ≈ to`.
292    ///
293    /// For near-singular cases (from≈to and from≈-to) the current implementation
294    /// is only accurate to about 0.001 (for `f32`).
295    ///
296    /// # Panics
297    ///
298    /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
299    #[must_use]
300    pub fn from_rotation_arc(from: DVec3, to: DVec3) -> Self {
301        glam_assert!(from.is_normalized());
302        glam_assert!(to.is_normalized());
303
304        const ONE_MINUS_EPS: f64 = 1.0 - 2.0 * f64::EPSILON;
305        let dot = from.dot(to);
306        if dot > ONE_MINUS_EPS {
307            // 0° singularity: from ≈ to
308            Self::IDENTITY
309        } else if dot < -ONE_MINUS_EPS {
310            // 180° singularity: from ≈ -to
311            use core::f64::consts::PI; // half a turn = 𝛕/2 = 180°
312            Self::from_axis_angle(from.any_orthonormal_vector(), PI)
313        } else {
314            let c = from.cross(to);
315            Self::from_xyzw(c.x, c.y, c.z, 1.0 + dot).normalize()
316        }
317    }
318
319    /// Gets the minimal rotation for transforming `from` to either `to` or `-to`.  This means
320    /// that the resulting quaternion will rotate `from` so that it is colinear with `to`.
321    ///
322    /// The rotation is in the plane spanned by the two vectors.  Will rotate at most 90
323    /// degrees.
324    ///
325    /// The inputs must be unit vectors.
326    ///
327    /// `to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1`.
328    ///
329    /// # Panics
330    ///
331    /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
332    #[inline]
333    #[must_use]
334    pub fn from_rotation_arc_colinear(from: DVec3, to: DVec3) -> Self {
335        if from.dot(to) < 0.0 {
336            Self::from_rotation_arc(from, -to)
337        } else {
338            Self::from_rotation_arc(from, to)
339        }
340    }
341
342    /// Gets the minimal rotation for transforming `from` to `to`.  The resulting rotation is
343    /// around the z axis. Will rotate at most 180 degrees.
344    ///
345    /// The inputs must be unit vectors.
346    ///
347    /// `from_rotation_arc_2d(from, to) * from ≈ to`.
348    ///
349    /// For near-singular cases (from≈to and from≈-to) the current implementation
350    /// is only accurate to about 0.001 (for `f32`).
351    ///
352    /// # Panics
353    ///
354    /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
355    #[must_use]
356    pub fn from_rotation_arc_2d(from: DVec2, to: DVec2) -> Self {
357        glam_assert!(from.is_normalized());
358        glam_assert!(to.is_normalized());
359
360        const ONE_MINUS_EPSILON: f64 = 1.0 - 2.0 * f64::EPSILON;
361        let dot = from.dot(to);
362        if dot > ONE_MINUS_EPSILON {
363            // 0° singularity: from ≈ to
364            Self::IDENTITY
365        } else if dot < -ONE_MINUS_EPSILON {
366            // 180° singularity: from ≈ -to
367            const COS_FRAC_PI_2: f64 = 0.0;
368            const SIN_FRAC_PI_2: f64 = 1.0;
369            // rotation around z by PI radians
370            Self::from_xyzw(0.0, 0.0, SIN_FRAC_PI_2, COS_FRAC_PI_2)
371        } else {
372            // vector3 cross where z=0
373            let z = from.x * to.y - to.x * from.y;
374            let w = 1.0 + dot;
375            // calculate length with x=0 and y=0 to normalize
376            let len_rcp = 1.0 / math::sqrt(z * z + w * w);
377            Self::from_xyzw(0.0, 0.0, z * len_rcp, w * len_rcp)
378        }
379    }
380
381    /// Returns the rotation axis (normalized) and angle (in radians) of `self`.
382    #[inline]
383    #[must_use]
384    pub fn to_axis_angle(self) -> (DVec3, f64) {
385        const EPSILON: f64 = 1.0e-8;
386        let v = DVec3::new(self.x, self.y, self.z);
387        let length = v.length();
388        if length >= EPSILON {
389            let angle = 2.0 * math::atan2(length, self.w);
390            let axis = v / length;
391            (axis, angle)
392        } else {
393            (DVec3::X, 0.0)
394        }
395    }
396
397    /// Returns the rotation axis scaled by the rotation in radians.
398    #[inline]
399    #[must_use]
400    pub fn to_scaled_axis(self) -> DVec3 {
401        let (axis, angle) = self.to_axis_angle();
402        axis * angle
403    }
404
405    /// Returns the rotation angles for the given euler rotation sequence.
406    #[inline]
407    #[must_use]
408    pub fn to_euler(self, order: EulerRot) -> (f64, f64, f64) {
409        self.to_euler_angles(order)
410    }
411
412    /// `[x, y, z, w]`
413    #[inline]
414    #[must_use]
415    pub fn to_array(&self) -> [f64; 4] {
416        [self.x, self.y, self.z, self.w]
417    }
418
419    /// Returns the vector part of the quaternion.
420    #[inline]
421    #[must_use]
422    pub fn xyz(self) -> DVec3 {
423        DVec3::new(self.x, self.y, self.z)
424    }
425
426    /// Returns the quaternion conjugate of `self`. For a unit quaternion the
427    /// conjugate is also the inverse.
428    #[inline]
429    #[must_use]
430    pub fn conjugate(self) -> Self {
431        Self {
432            x: -self.x,
433            y: -self.y,
434            z: -self.z,
435            w: self.w,
436        }
437    }
438
439    /// Returns the inverse of a normalized quaternion.
440    ///
441    /// Typically quaternion inverse returns the conjugate of a normalized quaternion.
442    /// Because `self` is assumed to already be unit length this method *does not* normalize
443    /// before returning the conjugate.
444    ///
445    /// # Panics
446    ///
447    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
448    #[inline]
449    #[must_use]
450    pub fn inverse(self) -> Self {
451        glam_assert!(self.is_normalized());
452        self.conjugate()
453    }
454
455    /// Computes the dot product of `self` and `rhs`. The dot product is
456    /// equal to the cosine of the angle between two quaternion rotations.
457    #[inline]
458    #[must_use]
459    pub fn dot(self, rhs: Self) -> f64 {
460        DVec4::from(self).dot(DVec4::from(rhs))
461    }
462
463    /// Computes the length of `self`.
464    #[doc(alias = "magnitude")]
465    #[inline]
466    #[must_use]
467    pub fn length(self) -> f64 {
468        DVec4::from(self).length()
469    }
470
471    /// Computes the squared length of `self`.
472    ///
473    /// This is generally faster than `length()` as it avoids a square
474    /// root operation.
475    #[doc(alias = "magnitude2")]
476    #[inline]
477    #[must_use]
478    pub fn length_squared(self) -> f64 {
479        DVec4::from(self).length_squared()
480    }
481
482    /// Computes `1.0 / length()`.
483    ///
484    /// For valid results, `self` must _not_ be of length zero.
485    #[inline]
486    #[must_use]
487    pub fn length_recip(self) -> f64 {
488        DVec4::from(self).length_recip()
489    }
490
491    /// Returns `self` normalized to length 1.0.
492    ///
493    /// For valid results, `self` must _not_ be of length zero.
494    ///
495    /// Panics
496    ///
497    /// Will panic if `self` is zero length when `glam_assert` is enabled.
498    #[inline]
499    #[must_use]
500    pub fn normalize(self) -> Self {
501        Self::from_vec4(DVec4::from(self).normalize())
502    }
503
504    /// Returns `true` if, and only if, all elements are finite.
505    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
506    #[inline]
507    #[must_use]
508    pub fn is_finite(self) -> bool {
509        DVec4::from(self).is_finite()
510    }
511
512    /// Returns `true` if any elements are `NAN`.
513    #[inline]
514    #[must_use]
515    pub fn is_nan(self) -> bool {
516        DVec4::from(self).is_nan()
517    }
518
519    /// Returns whether `self` of length `1.0` or not.
520    ///
521    /// Uses a precision threshold of `1e-6`.
522    #[inline]
523    #[must_use]
524    pub fn is_normalized(self) -> bool {
525        DVec4::from(self).is_normalized()
526    }
527
528    #[inline]
529    #[must_use]
530    pub fn is_near_identity(self) -> bool {
531        // Based on https://github.com/nfrechette/rtm `rtm::quat_near_identity`
532        let threshold_angle = 0.002_847_144_6;
533        // Because of floating point precision, we cannot represent very small rotations.
534        // The closest f32 to 1.0 that is not 1.0 itself yields:
535        // 0.99999994.acos() * 2.0  = 0.000690533954 rad
536        //
537        // An error threshold of 1.e-6 is used by default.
538        // (1.0 - 1.e-6).acos() * 2.0 = 0.00284714461 rad
539        // (1.0 - 1.e-7).acos() * 2.0 = 0.00097656250 rad
540        //
541        // We don't really care about the angle value itself, only if it's close to 0.
542        // This will happen whenever quat.w is close to 1.0.
543        // If the quat.w is close to -1.0, the angle will be near 2*PI which is close to
544        // a negative 0 rotation. By forcing quat.w to be positive, we'll end up with
545        // the shortest path.
546        let positive_w_angle = math::acos_approx(math::abs(self.w)) * 2.0;
547        positive_w_angle < threshold_angle
548    }
549
550    /// Returns the angle (in radians) for the minimal rotation
551    /// for transforming this quaternion into another.
552    ///
553    /// Both quaternions must be normalized.
554    ///
555    /// # Panics
556    ///
557    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
558    #[inline]
559    #[must_use]
560    pub fn angle_between(self, rhs: Self) -> f64 {
561        glam_assert!(self.is_normalized() && rhs.is_normalized());
562        math::acos_approx(math::abs(self.dot(rhs))) * 2.0
563    }
564
565    /// Rotates towards `rhs` up to `max_angle` (in radians).
566    ///
567    /// When `max_angle` is `0.0`, the result will be equal to `self`. When `max_angle` is equal to
568    /// `self.angle_between(rhs)`, the result will be equal to `rhs`. If `max_angle` is negative,
569    /// rotates towards the exact opposite of `rhs`. Will not go past the target.
570    ///
571    /// Both quaternions must be normalized.
572    ///
573    /// # Panics
574    ///
575    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
576    #[inline]
577    #[must_use]
578    pub fn rotate_towards(&self, rhs: Self, max_angle: f64) -> Self {
579        glam_assert!(self.is_normalized() && rhs.is_normalized());
580        let angle = self.angle_between(rhs);
581        if angle <= 1e-4 {
582            return *self;
583        }
584        let s = (max_angle / angle).clamp(-1.0, 1.0);
585        self.slerp(rhs, s)
586    }
587
588    /// Returns true if the absolute difference of all elements between `self` and `rhs`
589    /// is less than or equal to `max_abs_diff`.
590    ///
591    /// This can be used to compare if two quaternions contain similar elements. It works
592    /// best when comparing with a known value. The `max_abs_diff` that should be used used
593    /// depends on the values being compared against.
594    ///
595    /// For more see
596    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
597    #[inline]
598    #[must_use]
599    pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool {
600        DVec4::from(self).abs_diff_eq(DVec4::from(rhs), max_abs_diff)
601    }
602
603    #[inline(always)]
604    #[must_use]
605    fn lerp_impl(self, end: Self, s: f64) -> Self {
606        (self * (1.0 - s) + end * s).normalize()
607    }
608
609    /// Performs a linear interpolation between `self` and `rhs` based on
610    /// the value `s`.
611    ///
612    /// When `s` is `0.0`, the result will be equal to `self`.  When `s`
613    /// is `1.0`, the result will be equal to `rhs`.
614    ///
615    /// # Panics
616    ///
617    /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
618    #[doc(alias = "mix")]
619    #[inline]
620    #[must_use]
621    pub fn lerp(self, end: Self, s: f64) -> Self {
622        glam_assert!(self.is_normalized());
623        glam_assert!(end.is_normalized());
624
625        let dot = self.dot(end);
626        let bias = if dot >= 0.0 { 1.0 } else { -1.0 };
627        self.lerp_impl(end * bias, s)
628    }
629
630    /// Performs a spherical linear interpolation between `self` and `end`
631    /// based on the value `s`.
632    ///
633    /// When `s` is `0.0`, the result will be equal to `self`.  When `s`
634    /// is `1.0`, the result will be equal to `end`.
635    ///
636    /// # Panics
637    ///
638    /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
639    #[inline]
640    #[must_use]
641    pub fn slerp(self, mut end: Self, s: f64) -> Self {
642        // http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/
643        glam_assert!(self.is_normalized());
644        glam_assert!(end.is_normalized());
645
646        // Note that a rotation can be represented by two quaternions: `q` and
647        // `-q`. The slerp path between `q` and `end` will be different from the
648        // path between `-q` and `end`. One path will take the long way around and
649        // one will take the short way. In order to correct for this, the `dot`
650        // product between `self` and `end` should be positive. If the `dot`
651        // product is negative, slerp between `self` and `-end`.
652        let mut dot = self.dot(end);
653        if dot < 0.0 {
654            end = -end;
655            dot = -dot;
656        }
657
658        const DOT_THRESHOLD: f64 = 1.0 - f64::EPSILON;
659        if dot > DOT_THRESHOLD {
660            // if above threshold perform linear interpolation to avoid divide by zero
661            self.lerp_impl(end, s)
662        } else {
663            let theta = math::acos_approx(dot);
664
665            let scale1 = math::sin(theta * (1.0 - s));
666            let scale2 = math::sin(theta * s);
667            let theta_sin = math::sin(theta);
668            ((self * scale1) + (end * scale2)) * (1.0 / theta_sin)
669        }
670    }
671
672    /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
673    ///
674    /// # Panics
675    ///
676    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
677    #[inline]
678    #[must_use]
679    pub fn mul_vec3(self, rhs: DVec3) -> DVec3 {
680        glam_assert!(self.is_normalized());
681
682        let w = self.w;
683        let b = DVec3::new(self.x, self.y, self.z);
684        let b2 = b.dot(b);
685        rhs.mul(w * w - b2)
686            .add(b.mul(rhs.dot(b) * 2.0))
687            .add(b.cross(rhs).mul(w * 2.0))
688    }
689
690    /// Multiplies two quaternions. If they each represent a rotation, the result will
691    /// represent the combined rotation.
692    ///
693    /// Note that due to floating point rounding the result may not be perfectly normalized.
694    ///
695    /// # Panics
696    ///
697    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
698    #[inline]
699    #[must_use]
700    pub fn mul_quat(self, rhs: Self) -> Self {
701        let (x0, y0, z0, w0) = self.into();
702        let (x1, y1, z1, w1) = rhs.into();
703        Self::from_xyzw(
704            w0 * x1 + x0 * w1 + y0 * z1 - z0 * y1,
705            w0 * y1 - x0 * z1 + y0 * w1 + z0 * x1,
706            w0 * z1 + x0 * y1 - y0 * x1 + z0 * w1,
707            w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1,
708        )
709    }
710
711    /// Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.
712    ///
713    /// Note if the input affine matrix contain scales, shears, or other non-rotation
714    /// transformations then the resulting quaternion will be ill-defined.
715    ///
716    /// # Panics
717    ///
718    /// Will panic if any input affine matrix column is not normalized when `glam_assert` is
719    /// enabled.
720    #[inline]
721    #[must_use]
722    pub fn from_affine3(a: &crate::DAffine3) -> Self {
723        #[allow(clippy::useless_conversion)]
724        Self::from_rotation_axes(
725            a.matrix3.x_axis.into(),
726            a.matrix3.y_axis.into(),
727            a.matrix3.z_axis.into(),
728        )
729    }
730
731    #[inline]
732    #[must_use]
733    pub fn as_quat(self) -> Quat {
734        Quat::from_xyzw(self.x as f32, self.y as f32, self.z as f32, self.w as f32)
735    }
736}
737
738impl fmt::Debug for DQuat {
739    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
740        fmt.debug_tuple(stringify!(DQuat))
741            .field(&self.x)
742            .field(&self.y)
743            .field(&self.z)
744            .field(&self.w)
745            .finish()
746    }
747}
748
749impl fmt::Display for DQuat {
750    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
751        if let Some(p) = f.precision() {
752            write!(
753                f,
754                "[{:.*}, {:.*}, {:.*}, {:.*}]",
755                p, self.x, p, self.y, p, self.z, p, self.w
756            )
757        } else {
758            write!(f, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
759        }
760    }
761}
762
763impl Add<DQuat> for DQuat {
764    type Output = Self;
765    /// Adds two quaternions.
766    ///
767    /// The sum is not guaranteed to be normalized.
768    ///
769    /// Note that addition is not the same as combining the rotations represented by the
770    /// two quaternions! That corresponds to multiplication.
771    #[inline]
772    fn add(self, rhs: Self) -> Self {
773        Self::from_vec4(DVec4::from(self) + DVec4::from(rhs))
774    }
775}
776
777impl Sub<DQuat> for DQuat {
778    type Output = Self;
779    /// Subtracts the `rhs` quaternion from `self`.
780    ///
781    /// The difference is not guaranteed to be normalized.
782    #[inline]
783    fn sub(self, rhs: Self) -> Self {
784        Self::from_vec4(DVec4::from(self) - DVec4::from(rhs))
785    }
786}
787
788impl Mul<f64> for DQuat {
789    type Output = Self;
790    /// Multiplies a quaternion by a scalar value.
791    ///
792    /// The product is not guaranteed to be normalized.
793    #[inline]
794    fn mul(self, rhs: f64) -> Self {
795        Self::from_vec4(DVec4::from(self) * rhs)
796    }
797}
798
799impl Div<f64> for DQuat {
800    type Output = Self;
801    /// Divides a quaternion by a scalar value.
802    /// The quotient is not guaranteed to be normalized.
803    #[inline]
804    fn div(self, rhs: f64) -> Self {
805        Self::from_vec4(DVec4::from(self) / rhs)
806    }
807}
808
809impl Mul<DQuat> for DQuat {
810    type Output = Self;
811    /// Multiplies two quaternions. If they each represent a rotation, the result will
812    /// represent the combined rotation.
813    ///
814    /// Note that due to floating point rounding the result may not be perfectly
815    /// normalized.
816    ///
817    /// # Panics
818    ///
819    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
820    #[inline]
821    fn mul(self, rhs: Self) -> Self {
822        self.mul_quat(rhs)
823    }
824}
825
826impl MulAssign<DQuat> for DQuat {
827    /// Multiplies two quaternions. If they each represent a rotation, the result will
828    /// represent the combined rotation.
829    ///
830    /// Note that due to floating point rounding the result may not be perfectly
831    /// normalized.
832    ///
833    /// # Panics
834    ///
835    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
836    #[inline]
837    fn mul_assign(&mut self, rhs: Self) {
838        *self = self.mul_quat(rhs);
839    }
840}
841
842impl Mul<DVec3> for DQuat {
843    type Output = DVec3;
844    /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
845    ///
846    /// # Panics
847    ///
848    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
849    #[inline]
850    fn mul(self, rhs: DVec3) -> Self::Output {
851        self.mul_vec3(rhs)
852    }
853}
854
855impl Neg for DQuat {
856    type Output = Self;
857    #[inline]
858    fn neg(self) -> Self {
859        self * -1.0
860    }
861}
862
863impl Default for DQuat {
864    #[inline]
865    fn default() -> Self {
866        Self::IDENTITY
867    }
868}
869
870impl PartialEq for DQuat {
871    #[inline]
872    fn eq(&self, rhs: &Self) -> bool {
873        DVec4::from(*self).eq(&DVec4::from(*rhs))
874    }
875}
876
877#[cfg(not(target_arch = "spirv"))]
878impl AsRef<[f64; 4]> for DQuat {
879    #[inline]
880    fn as_ref(&self) -> &[f64; 4] {
881        unsafe { &*(self as *const Self as *const [f64; 4]) }
882    }
883}
884
885impl Sum<Self> for DQuat {
886    fn sum<I>(iter: I) -> Self
887    where
888        I: Iterator<Item = Self>,
889    {
890        iter.fold(Self::ZERO, Self::add)
891    }
892}
893
894impl<'a> Sum<&'a Self> for DQuat {
895    fn sum<I>(iter: I) -> Self
896    where
897        I: Iterator<Item = &'a Self>,
898    {
899        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
900    }
901}
902
903impl Product for DQuat {
904    fn product<I>(iter: I) -> Self
905    where
906        I: Iterator<Item = Self>,
907    {
908        iter.fold(Self::IDENTITY, Self::mul)
909    }
910}
911
912impl<'a> Product<&'a Self> for DQuat {
913    fn product<I>(iter: I) -> Self
914    where
915        I: Iterator<Item = &'a Self>,
916    {
917        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
918    }
919}
920
921impl From<DQuat> for DVec4 {
922    #[inline]
923    fn from(q: DQuat) -> Self {
924        Self::new(q.x, q.y, q.z, q.w)
925    }
926}
927
928impl From<DQuat> for (f64, f64, f64, f64) {
929    #[inline]
930    fn from(q: DQuat) -> Self {
931        (q.x, q.y, q.z, q.w)
932    }
933}
934
935impl From<DQuat> for [f64; 4] {
936    #[inline]
937    fn from(q: DQuat) -> Self {
938        [q.x, q.y, q.z, q.w]
939    }
940}