nalgebra/geometry/isometry.rs
1use approx::{AbsDiffEq, RelativeEq, UlpsEq};
2use std::fmt;
3use std::hash;
4
5#[cfg(feature = "serde-serialize-no-std")]
6use serde::{Deserialize, Serialize};
7
8use simba::scalar::{RealField, SubsetOf};
9use simba::simd::SimdRealField;
10
11use crate::base::allocator::Allocator;
12use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
13use crate::base::storage::Owned;
14use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar, Unit};
15use crate::geometry::{AbstractRotation, Point, Translation};
16
17use crate::{Isometry3, Quaternion, Vector3, Vector4};
18
19#[cfg(feature = "rkyv-serialize")]
20use rkyv::bytecheck;
21
22/// A direct isometry, i.e., a rotation followed by a translation (aka. a rigid-body motion).
23///
24/// This is also known as an element of a Special Euclidean (SE) group.
25/// The `Isometry` type can either represent a 2D or 3D isometry.
26/// A 2D isometry is composed of:
27/// - A translation part of type [`Translation2`](crate::Translation2)
28/// - A rotation part which can either be a [`UnitComplex`](crate::UnitComplex) or a [`Rotation2`](crate::Rotation2).
29///
30/// A 3D isometry is composed of:
31/// - A translation part of type [`Translation3`](crate::Translation3)
32/// - A rotation part which can either be a [`UnitQuaternion`](crate::UnitQuaternion) or a [`Rotation3`](crate::Rotation3).
33///
34/// Note that instead of using the [`Isometry`](crate::Isometry) type in your code directly, you should use one
35/// of its aliases: [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3),
36/// [`IsometryMatrix2`](crate::IsometryMatrix2), [`IsometryMatrix3`](crate::IsometryMatrix3). Though
37/// keep in mind that all the documentation of all the methods of these aliases will also appears on
38/// this page.
39///
40/// # Construction
41/// * [From a 2D vector and/or an angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-2d-vector-andor-a-rotation-angle)
42/// * [From a 3D vector and/or an axis-angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-3d-vector-andor-an-axis-angle)
43/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `face_towards`…</span>](#construction-from-a-3d-eye-position-and-target-point)
44/// * [From the translation and rotation parts <span style="float:right;">`from_parts`…</span>](#from-the-translation-and-rotation-parts)
45///
46/// # Transformation and composition
47/// Note that transforming vectors and points can be done by multiplication, e.g., `isometry * point`.
48/// Composing an isometry with another transformation can also be done by multiplication or division.
49///
50/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
51/// * [Inversion and in-place composition <span style="float:right;">`inverse`, `append_rotation_wrt_point_mut`…</span>](#inversion-and-in-place-composition)
52/// * [Interpolation <span style="float:right;">`lerp_slerp`…</span>](#interpolation)
53///
54/// # Conversion to a matrix
55/// * [Conversion to a matrix <span style="float:right;">`to_matrix`…</span>](#conversion-to-a-matrix)
56///
57#[repr(C)]
58#[derive(Debug, Copy, Clone)]
59#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
60#[cfg_attr(
61 feature = "serde-serialize-no-std",
62 serde(bound(serialize = "R: Serialize,
63 DefaultAllocator: Allocator<Const<D>>,
64 Owned<T, Const<D>>: Serialize,
65 T: Scalar"))
66)]
67#[cfg_attr(
68 feature = "serde-serialize-no-std",
69 serde(bound(deserialize = "R: Deserialize<'de>,
70 DefaultAllocator: Allocator<Const<D>>,
71 Owned<T, Const<D>>: Deserialize<'de>,
72 T: Scalar"))
73)]
74#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
75#[cfg_attr(
76 feature = "rkyv-serialize-no-std",
77 derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
78 archive(
79 as = "Isometry<T::Archived, R::Archived, D>",
80 bound(archive = "
81 T: rkyv::Archive,
82 R: rkyv::Archive,
83 Translation<T, D>: rkyv::Archive<Archived = Translation<T::Archived, D>>
84 ")
85 )
86)]
87pub struct Isometry<T, R, const D: usize> {
88 /// The pure rotational part of this isometry.
89 pub rotation: R,
90 /// The pure translational part of this isometry.
91 pub translation: Translation<T, D>,
92}
93
94impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Isometry<T, R, D>
95where
96 Owned<T, Const<D>>: hash::Hash,
97{
98 fn hash<H: hash::Hasher>(&self, state: &mut H) {
99 self.translation.hash(state);
100 self.rotation.hash(state);
101 }
102}
103
104#[cfg(feature = "bytemuck")]
105unsafe impl<T: Scalar, R, const D: usize> bytemuck::Zeroable for Isometry<T, R, D>
106where
107 SVector<T, D>: bytemuck::Zeroable,
108 R: bytemuck::Zeroable,
109{
110}
111
112#[cfg(feature = "bytemuck")]
113unsafe impl<T: Scalar, R, const D: usize> bytemuck::Pod for Isometry<T, R, D>
114where
115 SVector<T, D>: bytemuck::Pod,
116 R: bytemuck::Pod,
117 T: Copy,
118{
119}
120
121/// # From the translation and rotation parts
122impl<T: Scalar, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> {
123 /// Creates a new isometry from its rotational and translational parts.
124 ///
125 /// # Example
126 ///
127 /// ```
128 /// # #[macro_use] extern crate approx;
129 /// # use std::f32;
130 /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
131 /// let tra = Translation3::new(0.0, 0.0, 3.0);
132 /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
133 /// let iso = Isometry3::from_parts(tra, rot);
134 ///
135 /// assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
136 /// ```
137 #[inline]
138 pub fn from_parts(translation: Translation<T, D>, rotation: R) -> Self {
139 Self {
140 rotation,
141 translation,
142 }
143 }
144}
145
146/// # Inversion and in-place composition
147impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
148where
149 T::Element: SimdRealField,
150{
151 /// Inverts `self`.
152 ///
153 /// # Example
154 ///
155 /// ```
156 /// # use std::f32;
157 /// # use nalgebra::{Isometry2, Point2, Vector2};
158 /// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
159 /// let inv = iso.inverse();
160 /// let pt = Point2::new(1.0, 2.0);
161 ///
162 /// assert_eq!(inv * (iso * pt), pt);
163 /// ```
164 #[inline]
165 #[must_use = "Did you mean to use inverse_mut()?"]
166 pub fn inverse(&self) -> Self {
167 let mut res = self.clone();
168 res.inverse_mut();
169 res
170 }
171
172 /// Inverts `self` in-place.
173 ///
174 /// # Example
175 ///
176 /// ```
177 /// # use std::f32;
178 /// # use nalgebra::{Isometry2, Point2, Vector2};
179 /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
180 /// let pt = Point2::new(1.0, 2.0);
181 /// let transformed_pt = iso * pt;
182 /// iso.inverse_mut();
183 ///
184 /// assert_eq!(iso * transformed_pt, pt);
185 /// ```
186 #[inline]
187 pub fn inverse_mut(&mut self) {
188 self.rotation.inverse_mut();
189 self.translation.inverse_mut();
190 self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
191 }
192
193 /// Computes `self.inverse() * rhs` in a more efficient way.
194 ///
195 /// # Example
196 ///
197 /// ```
198 /// # use std::f32;
199 /// # use nalgebra::{Isometry2, Point2, Vector2};
200 /// let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
201 /// let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);
202 ///
203 /// assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
204 /// ```
205 #[inline]
206 #[must_use]
207 pub fn inv_mul(&self, rhs: &Isometry<T, R, D>) -> Self {
208 let inv_rot1 = self.rotation.inverse();
209 let tr_12 = &rhs.translation.vector - &self.translation.vector;
210 Isometry::from_parts(
211 inv_rot1.transform_vector(&tr_12).into(),
212 inv_rot1 * rhs.rotation.clone(),
213 )
214 }
215
216 /// Appends to `self` the given translation in-place.
217 ///
218 /// # Example
219 ///
220 /// ```
221 /// # use std::f32;
222 /// # use nalgebra::{Isometry2, Translation2, Vector2};
223 /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
224 /// let tra = Translation2::new(3.0, 4.0);
225 /// // Same as `iso = tra * iso`.
226 /// iso.append_translation_mut(&tra);
227 ///
228 /// assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
229 /// ```
230 #[inline]
231 pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
232 self.translation.vector += &t.vector
233 }
234
235 /// Appends to `self` the given rotation in-place.
236 ///
237 /// # Example
238 ///
239 /// ```
240 /// # #[macro_use] extern crate approx;
241 /// # use std::f32;
242 /// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2};
243 /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
244 /// let rot = UnitComplex::new(f32::consts::PI / 2.0);
245 /// // Same as `iso = rot * iso`.
246 /// iso.append_rotation_mut(&rot);
247 ///
248 /// assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
249 /// ```
250 #[inline]
251 pub fn append_rotation_mut(&mut self, r: &R) {
252 self.rotation = r.clone() * self.rotation.clone();
253 self.translation.vector = r.transform_vector(&self.translation.vector);
254 }
255
256 /// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
257 /// lets `p` invariant.
258 ///
259 /// # Example
260 ///
261 /// ```
262 /// # #[macro_use] extern crate approx;
263 /// # use std::f32;
264 /// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
265 /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
266 /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
267 /// let pt = Point2::new(1.0, 0.0);
268 /// iso.append_rotation_wrt_point_mut(&rot, &pt);
269 ///
270 /// assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
271 /// ```
272 #[inline]
273 pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
274 self.translation.vector -= &p.coords;
275 self.append_rotation_mut(r);
276 self.translation.vector += &p.coords;
277 }
278
279 /// Appends in-place to `self` a rotation centered at the point with coordinates
280 /// `self.translation`.
281 ///
282 /// # Example
283 ///
284 /// ```
285 /// # use std::f32;
286 /// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
287 /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
288 /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
289 /// iso.append_rotation_wrt_center_mut(&rot);
290 ///
291 /// // The translation part should not have changed.
292 /// assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
293 /// assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
294 /// ```
295 #[inline]
296 pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
297 self.rotation = r.clone() * self.rotation.clone();
298 }
299}
300
301/// # Transformation of a vector or a point
302impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
303where
304 T::Element: SimdRealField,
305{
306 /// Transform the given point by this isometry.
307 ///
308 /// This is the same as the multiplication `self * pt`.
309 ///
310 /// # Example
311 ///
312 /// ```
313 /// # #[macro_use] extern crate approx;
314 /// # use std::f32;
315 /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
316 /// let tra = Translation3::new(0.0, 0.0, 3.0);
317 /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
318 /// let iso = Isometry3::from_parts(tra, rot);
319 ///
320 /// let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
321 /// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
322 /// ```
323 #[inline]
324 #[must_use]
325 pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
326 self * pt
327 }
328
329 /// Transform the given vector by this isometry, ignoring the translation
330 /// component of the isometry.
331 ///
332 /// This is the same as the multiplication `self * v`.
333 ///
334 /// # Example
335 ///
336 /// ```
337 /// # #[macro_use] extern crate approx;
338 /// # use std::f32;
339 /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
340 /// let tra = Translation3::new(0.0, 0.0, 3.0);
341 /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
342 /// let iso = Isometry3::from_parts(tra, rot);
343 ///
344 /// let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
345 /// assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
346 /// ```
347 #[inline]
348 #[must_use]
349 pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
350 self * v
351 }
352
353 /// Transform the given point by the inverse of this isometry. This may be
354 /// less expensive than computing the entire isometry inverse and then
355 /// transforming the point.
356 ///
357 /// # Example
358 ///
359 /// ```
360 /// # #[macro_use] extern crate approx;
361 /// # use std::f32;
362 /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
363 /// let tra = Translation3::new(0.0, 0.0, 3.0);
364 /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
365 /// let iso = Isometry3::from_parts(tra, rot);
366 ///
367 /// let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
368 /// assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
369 /// ```
370 #[inline]
371 #[must_use]
372 pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
373 self.rotation
374 .inverse_transform_point(&(pt - &self.translation.vector))
375 }
376
377 /// Transform the given vector by the inverse of this isometry, ignoring the
378 /// translation component of the isometry. This may be
379 /// less expensive than computing the entire isometry inverse and then
380 /// transforming the point.
381 ///
382 /// # Example
383 ///
384 /// ```
385 /// # #[macro_use] extern crate approx;
386 /// # use std::f32;
387 /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
388 /// let tra = Translation3::new(0.0, 0.0, 3.0);
389 /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
390 /// let iso = Isometry3::from_parts(tra, rot);
391 ///
392 /// let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
393 /// assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
394 /// ```
395 #[inline]
396 #[must_use]
397 pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
398 self.rotation.inverse_transform_vector(v)
399 }
400
401 /// Transform the given unit vector by the inverse of this isometry, ignoring the
402 /// translation component of the isometry. This may be
403 /// less expensive than computing the entire isometry inverse and then
404 /// transforming the point.
405 ///
406 /// # Example
407 ///
408 /// ```
409 /// # #[macro_use] extern crate approx;
410 /// # use std::f32;
411 /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
412 /// let tra = Translation3::new(0.0, 0.0, 3.0);
413 /// let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
414 /// let iso = Isometry3::from_parts(tra, rot);
415 ///
416 /// let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
417 /// assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
418 /// ```
419 #[inline]
420 #[must_use]
421 pub fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
422 self.rotation.inverse_transform_unit_vector(v)
423 }
424}
425
426// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
427// and makes it hard to use it, e.g., for Transform × Isometry implementation.
428// This is OK since all constructors of the isometry enforce the Rotation bound already (and
429// explicit struct construction is prevented by the dummy ZST field).
430/// # Conversion to a matrix
431impl<T: SimdRealField, R, const D: usize> Isometry<T, R, D> {
432 /// Converts this isometry into its equivalent homogeneous transformation matrix.
433 ///
434 /// This is the same as `self.to_matrix()`.
435 ///
436 /// # Example
437 ///
438 /// ```
439 /// # #[macro_use] extern crate approx;
440 /// # use std::f32;
441 /// # use nalgebra::{Isometry2, Vector2, Matrix3};
442 /// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
443 /// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
444 /// 0.5, 0.8660254, 20.0,
445 /// 0.0, 0.0, 1.0);
446 ///
447 /// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
448 /// ```
449 #[inline]
450 #[must_use]
451 pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
452 where
453 Const<D>: DimNameAdd<U1>,
454 R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
455 DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
456 {
457 let mut res: OMatrix<T, _, _> = crate::convert_ref(&self.rotation);
458 res.fixed_view_mut::<D, 1>(0, D)
459 .copy_from(&self.translation.vector);
460
461 res
462 }
463
464 /// Converts this isometry into its equivalent homogeneous transformation matrix.
465 ///
466 /// This is the same as `self.to_homogeneous()`.
467 ///
468 /// # Example
469 ///
470 /// ```
471 /// # #[macro_use] extern crate approx;
472 /// # use std::f32;
473 /// # use nalgebra::{Isometry2, Vector2, Matrix3};
474 /// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
475 /// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
476 /// 0.5, 0.8660254, 20.0,
477 /// 0.0, 0.0, 1.0);
478 ///
479 /// assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
480 /// ```
481 #[inline]
482 #[must_use]
483 pub fn to_matrix(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
484 where
485 Const<D>: DimNameAdd<U1>,
486 R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
487 DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
488 {
489 self.to_homogeneous()
490 }
491}
492
493impl<T: SimdRealField, R, const D: usize> Eq for Isometry<T, R, D> where
494 R: AbstractRotation<T, D> + Eq
495{
496}
497
498impl<T: SimdRealField, R, const D: usize> PartialEq for Isometry<T, R, D>
499where
500 R: AbstractRotation<T, D> + PartialEq,
501{
502 #[inline]
503 fn eq(&self, right: &Self) -> bool {
504 self.translation == right.translation && self.rotation == right.rotation
505 }
506}
507
508impl<T: RealField, R, const D: usize> AbsDiffEq for Isometry<T, R, D>
509where
510 R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
511 T::Epsilon: Clone,
512{
513 type Epsilon = T::Epsilon;
514
515 #[inline]
516 fn default_epsilon() -> Self::Epsilon {
517 T::default_epsilon()
518 }
519
520 #[inline]
521 fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
522 self.translation
523 .abs_diff_eq(&other.translation, epsilon.clone())
524 && self.rotation.abs_diff_eq(&other.rotation, epsilon)
525 }
526}
527
528impl<T: RealField, R, const D: usize> RelativeEq for Isometry<T, R, D>
529where
530 R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
531 T::Epsilon: Clone,
532{
533 #[inline]
534 fn default_max_relative() -> Self::Epsilon {
535 T::default_max_relative()
536 }
537
538 #[inline]
539 fn relative_eq(
540 &self,
541 other: &Self,
542 epsilon: Self::Epsilon,
543 max_relative: Self::Epsilon,
544 ) -> bool {
545 self.translation
546 .relative_eq(&other.translation, epsilon.clone(), max_relative.clone())
547 && self
548 .rotation
549 .relative_eq(&other.rotation, epsilon, max_relative)
550 }
551}
552
553impl<T: RealField, R, const D: usize> UlpsEq for Isometry<T, R, D>
554where
555 R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
556 T::Epsilon: Clone,
557{
558 #[inline]
559 fn default_max_ulps() -> u32 {
560 T::default_max_ulps()
561 }
562
563 #[inline]
564 fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
565 self.translation
566 .ulps_eq(&other.translation, epsilon.clone(), max_ulps)
567 && self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
568 }
569}
570
571/*
572 *
573 * Display
574 *
575 */
576impl<T: RealField + fmt::Display, R, const D: usize> fmt::Display for Isometry<T, R, D>
577where
578 R: fmt::Display,
579{
580 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
581 let precision = f.precision().unwrap_or(3);
582
583 writeln!(f, "Isometry {{")?;
584 write!(f, "{:.*}", precision, self.translation)?;
585 write!(f, "{:.*}", precision, self.rotation)?;
586 writeln!(f, "}}")
587 }
588}