1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
use core::num::Wrapping;
use core::ops::{Add, Mul};
/// Defines an additive identity element for `Self`.
///
/// # Laws
///
/// ```text
/// a + 0 = a ∀ a ∈ Self
/// 0 + a = a ∀ a ∈ Self
/// ```
pub trait Zero: Sized + Add<Self, Output = Self> {
/// Returns the additive identity element of `Self`, `0`.
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// This cannot be an associated constant, because of bignums.
fn zero() -> Self;
/// Sets `self` to the additive identity element of `Self`, `0`.
fn set_zero(&mut self) {
*self = Zero::zero();
}
/// Returns `true` if `self` is equal to the additive identity.
fn is_zero(&self) -> bool;
}
/// Defines an associated constant representing the additive identity element
/// for `Self`.
pub trait ConstZero: Zero {
/// The additive identity element of `Self`, `0`.
const ZERO: Self;
}
macro_rules! zero_impl {
($t:ty, $v:expr) => {
impl Zero for $t {
#[inline]
fn zero() -> $t {
$v
}
#[inline]
fn is_zero(&self) -> bool {
*self == $v
}
}
impl ConstZero for $t {
const ZERO: Self = $v;
}
};
}
zero_impl!(usize, 0);
zero_impl!(u8, 0);
zero_impl!(u16, 0);
zero_impl!(u32, 0);
zero_impl!(u64, 0);
zero_impl!(u128, 0);
zero_impl!(isize, 0);
zero_impl!(i8, 0);
zero_impl!(i16, 0);
zero_impl!(i32, 0);
zero_impl!(i64, 0);
zero_impl!(i128, 0);
zero_impl!(f32, 0.0);
zero_impl!(f64, 0.0);
impl<T: Zero> Zero for Wrapping<T>
where
Wrapping<T>: Add<Output = Wrapping<T>>,
{
fn is_zero(&self) -> bool {
self.0.is_zero()
}
fn set_zero(&mut self) {
self.0.set_zero();
}
fn zero() -> Self {
Wrapping(T::zero())
}
}
impl<T: ConstZero> ConstZero for Wrapping<T>
where
Wrapping<T>: Add<Output = Wrapping<T>>,
{
const ZERO: Self = Wrapping(T::ZERO);
}
/// Defines a multiplicative identity element for `Self`.
///
/// # Laws
///
/// ```text
/// a * 1 = a ∀ a ∈ Self
/// 1 * a = a ∀ a ∈ Self
/// ```
pub trait One: Sized + Mul<Self, Output = Self> {
/// Returns the multiplicative identity element of `Self`, `1`.
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// This cannot be an associated constant, because of bignums.
fn one() -> Self;
/// Sets `self` to the multiplicative identity element of `Self`, `1`.
fn set_one(&mut self) {
*self = One::one();
}
/// Returns `true` if `self` is equal to the multiplicative identity.
///
/// For performance reasons, it's best to implement this manually.
/// After a semver bump, this method will be required, and the
/// `where Self: PartialEq` bound will be removed.
#[inline]
fn is_one(&self) -> bool
where
Self: PartialEq,
{
*self == Self::one()
}
}
/// Defines an associated constant representing the multiplicative identity
/// element for `Self`.
pub trait ConstOne: One {
/// The multiplicative identity element of `Self`, `1`.
const ONE: Self;
}
macro_rules! one_impl {
($t:ty, $v:expr) => {
impl One for $t {
#[inline]
fn one() -> $t {
$v
}
#[inline]
fn is_one(&self) -> bool {
*self == $v
}
}
impl ConstOne for $t {
const ONE: Self = $v;
}
};
}
one_impl!(usize, 1);
one_impl!(u8, 1);
one_impl!(u16, 1);
one_impl!(u32, 1);
one_impl!(u64, 1);
one_impl!(u128, 1);
one_impl!(isize, 1);
one_impl!(i8, 1);
one_impl!(i16, 1);
one_impl!(i32, 1);
one_impl!(i64, 1);
one_impl!(i128, 1);
one_impl!(f32, 1.0);
one_impl!(f64, 1.0);
impl<T: One> One for Wrapping<T>
where
Wrapping<T>: Mul<Output = Wrapping<T>>,
{
fn set_one(&mut self) {
self.0.set_one();
}
fn one() -> Self {
Wrapping(T::one())
}
}
impl<T: ConstOne> ConstOne for Wrapping<T>
where
Wrapping<T>: Mul<Output = Wrapping<T>>,
{
const ONE: Self = Wrapping(T::ONE);
}
// Some helper functions provided for backwards compatibility.
/// Returns the additive identity, `0`.
#[inline(always)]
pub fn zero<T: Zero>() -> T {
Zero::zero()
}
/// Returns the multiplicative identity, `1`.
#[inline(always)]
pub fn one<T: One>() -> T {
One::one()
}
#[test]
fn wrapping_identities() {
macro_rules! test_wrapping_identities {
($($t:ty)+) => {
$(
assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0);
assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0);
assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero());
assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero());
)+
};
}
test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64);
}
#[test]
fn wrapping_is_zero() {
fn require_zero<T: Zero>(_: &T) {}
require_zero(&Wrapping(42));
}
#[test]
fn wrapping_is_one() {
fn require_one<T: One>(_: &T) {}
require_one(&Wrapping(42));
}