1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
use core::ops::{Div, Rem};
pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
/// Calculates Euclidean division, the matching method for `rem_euclid`.
///
/// This computes the integer `n` such that
/// `self = n * v + self.rem_euclid(v)`.
/// In other words, the result is `self / v` rounded to the integer `n`
/// such that `self >= n * v`.
///
/// # Examples
///
/// ```
/// use num_traits::Euclid;
///
/// let a: i32 = 7;
/// let b: i32 = 4;
/// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1
/// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2
/// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1
/// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2
/// ```
fn div_euclid(&self, v: &Self) -> Self;
/// Calculates the least nonnegative remainder of `self (mod v)`.
///
/// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in
/// most cases. However, due to a floating point round-off error it can
/// result in `r == v.abs()`, violating the mathematical definition, if
/// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`.
/// This result is not an element of the function's codomain, but it is the
/// closest floating point number in the real numbers and thus fulfills the
/// property `self == self.div_euclid(v) * v + self.rem_euclid(v)`
/// approximatively.
///
/// # Examples
///
/// ```
/// use num_traits::Euclid;
///
/// let a: i32 = 7;
/// let b: i32 = 4;
/// assert_eq!(Euclid::rem_euclid(&a, &b), 3);
/// assert_eq!(Euclid::rem_euclid(&-a, &b), 1);
/// assert_eq!(Euclid::rem_euclid(&a, &-b), 3);
/// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1);
/// ```
fn rem_euclid(&self, v: &Self) -> Self;
/// Returns both the quotient and remainder from Euclidean division.
///
/// By default, it internally calls both `Euclid::div_euclid` and `Euclid::rem_euclid`,
/// but it can be overridden in order to implement some optimization.
///
/// # Examples
///
/// ```
/// # use num_traits::Euclid;
/// let x = 5u8;
/// let y = 3u8;
///
/// let div = Euclid::div_euclid(&x, &y);
/// let rem = Euclid::rem_euclid(&x, &y);
///
/// assert_eq!((div, rem), Euclid::div_rem_euclid(&x, &y));
/// ```
fn div_rem_euclid(&self, v: &Self) -> (Self, Self) {
(self.div_euclid(v), self.rem_euclid(v))
}
}
macro_rules! euclid_forward_impl {
($($t:ty)*) => {$(
impl Euclid for $t {
#[inline]
fn div_euclid(&self, v: &$t) -> Self {
<$t>::div_euclid(*self, *v)
}
#[inline]
fn rem_euclid(&self, v: &$t) -> Self {
<$t>::rem_euclid(*self, *v)
}
}
)*}
}
euclid_forward_impl!(isize i8 i16 i32 i64 i128);
euclid_forward_impl!(usize u8 u16 u32 u64 u128);
#[cfg(feature = "std")]
euclid_forward_impl!(f32 f64);
#[cfg(not(feature = "std"))]
impl Euclid for f32 {
#[inline]
fn div_euclid(&self, v: &f32) -> f32 {
let q = <f32 as crate::float::FloatCore>::trunc(self / v);
if self % v < 0.0 {
return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
}
q
}
#[inline]
fn rem_euclid(&self, v: &f32) -> f32 {
let r = self % v;
if r < 0.0 {
r + <f32 as crate::float::FloatCore>::abs(*v)
} else {
r
}
}
}
#[cfg(not(feature = "std"))]
impl Euclid for f64 {
#[inline]
fn div_euclid(&self, v: &f64) -> f64 {
let q = <f64 as crate::float::FloatCore>::trunc(self / v);
if self % v < 0.0 {
return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
}
q
}
#[inline]
fn rem_euclid(&self, v: &f64) -> f64 {
let r = self % v;
if r < 0.0 {
r + <f64 as crate::float::FloatCore>::abs(*v)
} else {
r
}
}
}
pub trait CheckedEuclid: Euclid {
/// Performs euclid division that returns `None` instead of panicking on division by zero
/// and instead of wrapping around on underflow and overflow.
fn checked_div_euclid(&self, v: &Self) -> Option<Self>;
/// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and
/// division by zero. If any of that happens, `None` is returned.
fn checked_rem_euclid(&self, v: &Self) -> Option<Self>;
/// Returns both the quotient and remainder from checked Euclidean division.
///
/// By default, it internally calls both `CheckedEuclid::checked_div_euclid` and `CheckedEuclid::checked_rem_euclid`,
/// but it can be overridden in order to implement some optimization.
/// # Examples
///
/// ```
/// # use num_traits::CheckedEuclid;
/// let x = 5u8;
/// let y = 3u8;
///
/// let div = CheckedEuclid::checked_div_euclid(&x, &y);
/// let rem = CheckedEuclid::checked_rem_euclid(&x, &y);
///
/// assert_eq!(Some((div.unwrap(), rem.unwrap())), CheckedEuclid::checked_div_rem_euclid(&x, &y));
/// ```
fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)> {
Some((self.checked_div_euclid(v)?, self.checked_rem_euclid(v)?))
}
}
macro_rules! checked_euclid_forward_impl {
($($t:ty)*) => {$(
impl CheckedEuclid for $t {
#[inline]
fn checked_div_euclid(&self, v: &$t) -> Option<Self> {
<$t>::checked_div_euclid(*self, *v)
}
#[inline]
fn checked_rem_euclid(&self, v: &$t) -> Option<Self> {
<$t>::checked_rem_euclid(*self, *v)
}
}
)*}
}
checked_euclid_forward_impl!(isize i8 i16 i32 i64 i128);
checked_euclid_forward_impl!(usize u8 u16 u32 u64 u128);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn euclid_unsigned() {
macro_rules! test_euclid {
($($t:ident)+) => {
$(
{
let x: $t = 10;
let y: $t = 3;
let div = Euclid::div_euclid(&x, &y);
let rem = Euclid::rem_euclid(&x, &y);
assert_eq!(div, 3);
assert_eq!(rem, 1);
assert_eq!((div, rem), Euclid::div_rem_euclid(&x, &y));
}
)+
};
}
test_euclid!(usize u8 u16 u32 u64);
}
#[test]
fn euclid_signed() {
macro_rules! test_euclid {
($($t:ident)+) => {
$(
{
let x: $t = 10;
let y: $t = -3;
assert_eq!(Euclid::div_euclid(&x, &y), -3);
assert_eq!(Euclid::div_euclid(&-x, &y), 4);
assert_eq!(Euclid::rem_euclid(&x, &y), 1);
assert_eq!(Euclid::rem_euclid(&-x, &y), 2);
assert_eq!((Euclid::div_euclid(&x, &y), Euclid::rem_euclid(&x, &y)), Euclid::div_rem_euclid(&x, &y));
let x: $t = $t::min_value() + 1;
let y: $t = -1;
assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value());
}
)+
};
}
test_euclid!(isize i8 i16 i32 i64 i128);
}
#[test]
fn euclid_float() {
macro_rules! test_euclid {
($($t:ident)+) => {
$(
{
let x: $t = 12.1;
let y: $t = 3.2;
assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
assert_eq!((Euclid::div_euclid(&x, &y), Euclid::rem_euclid(&x, &y)), Euclid::div_rem_euclid(&x, &y));
}
)+
};
}
test_euclid!(f32 f64);
}
#[test]
fn euclid_checked() {
macro_rules! test_euclid_checked {
($($t:ident)+) => {
$(
{
assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None);
assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None);
assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None);
assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None);
}
)+
};
}
test_euclid_checked!(isize i8 i16 i32 i64 i128);
}
}