num_traits/
real.rs

1#![cfg(any(feature = "std", feature = "libm"))]
2
3use core::ops::Neg;
4
5use crate::{Float, Num, NumCast};
6
7// NOTE: These doctests have the same issue as those in src/float.rs.
8// They're testing the inherent methods directly, and not those of `Real`.
9
10/// A trait for real number types that do not necessarily have
11/// floating-point-specific characteristics such as NaN and infinity.
12///
13/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
14/// for a list of data types that could meaningfully implement this trait.
15///
16/// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
17pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
18    /// Returns the smallest finite value that this type can represent.
19    ///
20    /// ```
21    /// use num_traits::real::Real;
22    /// use std::f64;
23    ///
24    /// let x: f64 = Real::min_value();
25    ///
26    /// assert_eq!(x, f64::MIN);
27    /// ```
28    fn min_value() -> Self;
29
30    /// Returns the smallest positive, normalized value that this type can represent.
31    ///
32    /// ```
33    /// use num_traits::real::Real;
34    /// use std::f64;
35    ///
36    /// let x: f64 = Real::min_positive_value();
37    ///
38    /// assert_eq!(x, f64::MIN_POSITIVE);
39    /// ```
40    fn min_positive_value() -> Self;
41
42    /// Returns epsilon, a small positive value.
43    ///
44    /// ```
45    /// use num_traits::real::Real;
46    /// use std::f64;
47    ///
48    /// let x: f64 = Real::epsilon();
49    ///
50    /// assert_eq!(x, f64::EPSILON);
51    /// ```
52    ///
53    /// # Panics
54    ///
55    /// The default implementation will panic if `f32::EPSILON` cannot
56    /// be cast to `Self`.
57    fn epsilon() -> Self;
58
59    /// Returns the largest finite value that this type can represent.
60    ///
61    /// ```
62    /// use num_traits::real::Real;
63    /// use std::f64;
64    ///
65    /// let x: f64 = Real::max_value();
66    /// assert_eq!(x, f64::MAX);
67    /// ```
68    fn max_value() -> Self;
69
70    /// Returns the largest integer less than or equal to a number.
71    ///
72    /// ```
73    /// use num_traits::real::Real;
74    ///
75    /// let f = 3.99;
76    /// let g = 3.0;
77    ///
78    /// assert_eq!(f.floor(), 3.0);
79    /// assert_eq!(g.floor(), 3.0);
80    /// ```
81    fn floor(self) -> Self;
82
83    /// Returns the smallest integer greater than or equal to a number.
84    ///
85    /// ```
86    /// use num_traits::real::Real;
87    ///
88    /// let f = 3.01;
89    /// let g = 4.0;
90    ///
91    /// assert_eq!(f.ceil(), 4.0);
92    /// assert_eq!(g.ceil(), 4.0);
93    /// ```
94    fn ceil(self) -> Self;
95
96    /// Returns the nearest integer to a number. Round half-way cases away from
97    /// `0.0`.
98    ///
99    /// ```
100    /// use num_traits::real::Real;
101    ///
102    /// let f = 3.3;
103    /// let g = -3.3;
104    ///
105    /// assert_eq!(f.round(), 3.0);
106    /// assert_eq!(g.round(), -3.0);
107    /// ```
108    fn round(self) -> Self;
109
110    /// Return the integer part of a number.
111    ///
112    /// ```
113    /// use num_traits::real::Real;
114    ///
115    /// let f = 3.3;
116    /// let g = -3.7;
117    ///
118    /// assert_eq!(f.trunc(), 3.0);
119    /// assert_eq!(g.trunc(), -3.0);
120    /// ```
121    fn trunc(self) -> Self;
122
123    /// Returns the fractional part of a number.
124    ///
125    /// ```
126    /// use num_traits::real::Real;
127    ///
128    /// let x = 3.5;
129    /// let y = -3.5;
130    /// let abs_difference_x = (x.fract() - 0.5).abs();
131    /// let abs_difference_y = (y.fract() - (-0.5)).abs();
132    ///
133    /// assert!(abs_difference_x < 1e-10);
134    /// assert!(abs_difference_y < 1e-10);
135    /// ```
136    fn fract(self) -> Self;
137
138    /// Computes the absolute value of `self`. Returns `Float::nan()` if the
139    /// number is `Float::nan()`.
140    ///
141    /// ```
142    /// use num_traits::real::Real;
143    /// use std::f64;
144    ///
145    /// let x = 3.5;
146    /// let y = -3.5;
147    ///
148    /// let abs_difference_x = (x.abs() - x).abs();
149    /// let abs_difference_y = (y.abs() - (-y)).abs();
150    ///
151    /// assert!(abs_difference_x < 1e-10);
152    /// assert!(abs_difference_y < 1e-10);
153    ///
154    /// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
155    /// ```
156    fn abs(self) -> Self;
157
158    /// Returns a number that represents the sign of `self`.
159    ///
160    /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
161    /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
162    /// - `Float::nan()` if the number is `Float::nan()`
163    ///
164    /// ```
165    /// use num_traits::real::Real;
166    /// use std::f64;
167    ///
168    /// let f = 3.5;
169    ///
170    /// assert_eq!(f.signum(), 1.0);
171    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
172    ///
173    /// assert!(f64::NAN.signum().is_nan());
174    /// ```
175    fn signum(self) -> Self;
176
177    /// Returns `true` if `self` is positive, including `+0.0`,
178    /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
179    ///
180    /// ```
181    /// use num_traits::real::Real;
182    /// use std::f64;
183    ///
184    /// let neg_nan: f64 = -f64::NAN;
185    ///
186    /// let f = 7.0;
187    /// let g = -7.0;
188    ///
189    /// assert!(f.is_sign_positive());
190    /// assert!(!g.is_sign_positive());
191    /// assert!(!neg_nan.is_sign_positive());
192    /// ```
193    fn is_sign_positive(self) -> bool;
194
195    /// Returns `true` if `self` is negative, including `-0.0`,
196    /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
197    ///
198    /// ```
199    /// use num_traits::real::Real;
200    /// use std::f64;
201    ///
202    /// let nan: f64 = f64::NAN;
203    ///
204    /// let f = 7.0;
205    /// let g = -7.0;
206    ///
207    /// assert!(!f.is_sign_negative());
208    /// assert!(g.is_sign_negative());
209    /// assert!(!nan.is_sign_negative());
210    /// ```
211    fn is_sign_negative(self) -> bool;
212
213    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
214    /// error, yielding a more accurate result than an unfused multiply-add.
215    ///
216    /// Using `mul_add` can be more performant than an unfused multiply-add if
217    /// the target architecture has a dedicated `fma` CPU instruction.
218    ///
219    /// ```
220    /// use num_traits::real::Real;
221    ///
222    /// let m = 10.0;
223    /// let x = 4.0;
224    /// let b = 60.0;
225    ///
226    /// // 100.0
227    /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
228    ///
229    /// assert!(abs_difference < 1e-10);
230    /// ```
231    fn mul_add(self, a: Self, b: Self) -> Self;
232
233    /// Take the reciprocal (inverse) of a number, `1/x`.
234    ///
235    /// ```
236    /// use num_traits::real::Real;
237    ///
238    /// let x = 2.0;
239    /// let abs_difference = (x.recip() - (1.0/x)).abs();
240    ///
241    /// assert!(abs_difference < 1e-10);
242    /// ```
243    fn recip(self) -> Self;
244
245    /// Raise a number to an integer power.
246    ///
247    /// Using this function is generally faster than using `powf`
248    ///
249    /// ```
250    /// use num_traits::real::Real;
251    ///
252    /// let x = 2.0;
253    /// let abs_difference = (x.powi(2) - x*x).abs();
254    ///
255    /// assert!(abs_difference < 1e-10);
256    /// ```
257    fn powi(self, n: i32) -> Self;
258
259    /// Raise a number to a real number power.
260    ///
261    /// ```
262    /// use num_traits::real::Real;
263    ///
264    /// let x = 2.0;
265    /// let abs_difference = (x.powf(2.0) - x*x).abs();
266    ///
267    /// assert!(abs_difference < 1e-10);
268    /// ```
269    fn powf(self, n: Self) -> Self;
270
271    /// Take the square root of a number.
272    ///
273    /// Returns NaN if `self` is a negative floating-point number.
274    ///
275    /// # Panics
276    ///
277    /// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
278    ///
279    /// ```
280    /// use num_traits::real::Real;
281    ///
282    /// let positive = 4.0;
283    /// let negative = -4.0;
284    ///
285    /// let abs_difference = (positive.sqrt() - 2.0).abs();
286    ///
287    /// assert!(abs_difference < 1e-10);
288    /// assert!(::num_traits::Float::is_nan(negative.sqrt()));
289    /// ```
290    fn sqrt(self) -> Self;
291
292    /// Returns `e^(self)`, (the exponential function).
293    ///
294    /// ```
295    /// use num_traits::real::Real;
296    ///
297    /// let one = 1.0;
298    /// // e^1
299    /// let e = one.exp();
300    ///
301    /// // ln(e) - 1 == 0
302    /// let abs_difference = (e.ln() - 1.0).abs();
303    ///
304    /// assert!(abs_difference < 1e-10);
305    /// ```
306    fn exp(self) -> Self;
307
308    /// Returns `2^(self)`.
309    ///
310    /// ```
311    /// use num_traits::real::Real;
312    ///
313    /// let f = 2.0;
314    ///
315    /// // 2^2 - 4 == 0
316    /// let abs_difference = (f.exp2() - 4.0).abs();
317    ///
318    /// assert!(abs_difference < 1e-10);
319    /// ```
320    fn exp2(self) -> Self;
321
322    /// Returns the natural logarithm of the number.
323    ///
324    /// # Panics
325    ///
326    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
327    ///
328    /// ```
329    /// use num_traits::real::Real;
330    ///
331    /// let one = 1.0;
332    /// // e^1
333    /// let e = one.exp();
334    ///
335    /// // ln(e) - 1 == 0
336    /// let abs_difference = (e.ln() - 1.0).abs();
337    ///
338    /// assert!(abs_difference < 1e-10);
339    /// ```
340    fn ln(self) -> Self;
341
342    /// Returns the logarithm of the number with respect to an arbitrary base.
343    ///
344    /// # Panics
345    ///
346    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
347    ///
348    /// ```
349    /// use num_traits::real::Real;
350    ///
351    /// let ten = 10.0;
352    /// let two = 2.0;
353    ///
354    /// // log10(10) - 1 == 0
355    /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
356    ///
357    /// // log2(2) - 1 == 0
358    /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
359    ///
360    /// assert!(abs_difference_10 < 1e-10);
361    /// assert!(abs_difference_2 < 1e-10);
362    /// ```
363    fn log(self, base: Self) -> Self;
364
365    /// Returns the base 2 logarithm of the number.
366    ///
367    /// # Panics
368    ///
369    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
370    ///
371    /// ```
372    /// use num_traits::real::Real;
373    ///
374    /// let two = 2.0;
375    ///
376    /// // log2(2) - 1 == 0
377    /// let abs_difference = (two.log2() - 1.0).abs();
378    ///
379    /// assert!(abs_difference < 1e-10);
380    /// ```
381    fn log2(self) -> Self;
382
383    /// Returns the base 10 logarithm of the number.
384    ///
385    /// # Panics
386    ///
387    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
388    ///
389    ///
390    /// ```
391    /// use num_traits::real::Real;
392    ///
393    /// let ten = 10.0;
394    ///
395    /// // log10(10) - 1 == 0
396    /// let abs_difference = (ten.log10() - 1.0).abs();
397    ///
398    /// assert!(abs_difference < 1e-10);
399    /// ```
400    fn log10(self) -> Self;
401
402    /// Converts radians to degrees.
403    ///
404    /// ```
405    /// use std::f64::consts;
406    ///
407    /// let angle = consts::PI;
408    ///
409    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
410    ///
411    /// assert!(abs_difference < 1e-10);
412    /// ```
413    fn to_degrees(self) -> Self;
414
415    /// Converts degrees to radians.
416    ///
417    /// ```
418    /// use std::f64::consts;
419    ///
420    /// let angle = 180.0_f64;
421    ///
422    /// let abs_difference = (angle.to_radians() - consts::PI).abs();
423    ///
424    /// assert!(abs_difference < 1e-10);
425    /// ```
426    fn to_radians(self) -> Self;
427
428    /// Returns the maximum of the two numbers.
429    ///
430    /// ```
431    /// use num_traits::real::Real;
432    ///
433    /// let x = 1.0;
434    /// let y = 2.0;
435    ///
436    /// assert_eq!(x.max(y), y);
437    /// ```
438    fn max(self, other: Self) -> Self;
439
440    /// Returns the minimum of the two numbers.
441    ///
442    /// ```
443    /// use num_traits::real::Real;
444    ///
445    /// let x = 1.0;
446    /// let y = 2.0;
447    ///
448    /// assert_eq!(x.min(y), x);
449    /// ```
450    fn min(self, other: Self) -> Self;
451
452    /// The positive difference of two numbers.
453    ///
454    /// * If `self <= other`: `0:0`
455    /// * Else: `self - other`
456    ///
457    /// ```
458    /// use num_traits::real::Real;
459    ///
460    /// let x = 3.0;
461    /// let y = -3.0;
462    ///
463    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
464    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
465    ///
466    /// assert!(abs_difference_x < 1e-10);
467    /// assert!(abs_difference_y < 1e-10);
468    /// ```
469    fn abs_sub(self, other: Self) -> Self;
470
471    /// Take the cubic root of a number.
472    ///
473    /// ```
474    /// use num_traits::real::Real;
475    ///
476    /// let x = 8.0;
477    ///
478    /// // x^(1/3) - 2 == 0
479    /// let abs_difference = (x.cbrt() - 2.0).abs();
480    ///
481    /// assert!(abs_difference < 1e-10);
482    /// ```
483    fn cbrt(self) -> Self;
484
485    /// Calculate the length of the hypotenuse of a right-angle triangle given
486    /// legs of length `x` and `y`.
487    ///
488    /// ```
489    /// use num_traits::real::Real;
490    ///
491    /// let x = 2.0;
492    /// let y = 3.0;
493    ///
494    /// // sqrt(x^2 + y^2)
495    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
496    ///
497    /// assert!(abs_difference < 1e-10);
498    /// ```
499    fn hypot(self, other: Self) -> Self;
500
501    /// Computes the sine of a number (in radians).
502    ///
503    /// ```
504    /// use num_traits::real::Real;
505    /// use std::f64;
506    ///
507    /// let x = f64::consts::PI/2.0;
508    ///
509    /// let abs_difference = (x.sin() - 1.0).abs();
510    ///
511    /// assert!(abs_difference < 1e-10);
512    /// ```
513    fn sin(self) -> Self;
514
515    /// Computes the cosine of a number (in radians).
516    ///
517    /// ```
518    /// use num_traits::real::Real;
519    /// use std::f64;
520    ///
521    /// let x = 2.0*f64::consts::PI;
522    ///
523    /// let abs_difference = (x.cos() - 1.0).abs();
524    ///
525    /// assert!(abs_difference < 1e-10);
526    /// ```
527    fn cos(self) -> Self;
528
529    /// Computes the tangent of a number (in radians).
530    ///
531    /// ```
532    /// use num_traits::real::Real;
533    /// use std::f64;
534    ///
535    /// let x = f64::consts::PI/4.0;
536    /// let abs_difference = (x.tan() - 1.0).abs();
537    ///
538    /// assert!(abs_difference < 1e-14);
539    /// ```
540    fn tan(self) -> Self;
541
542    /// Computes the arcsine of a number. Return value is in radians in
543    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
544    /// [-1, 1].
545    ///
546    /// # Panics
547    ///
548    /// If this type does not support a NaN representation, this function should panic
549    /// if the number is outside the range [-1, 1].
550    ///
551    /// ```
552    /// use num_traits::real::Real;
553    /// use std::f64;
554    ///
555    /// let f = f64::consts::PI / 2.0;
556    ///
557    /// // asin(sin(pi/2))
558    /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
559    ///
560    /// assert!(abs_difference < 1e-10);
561    /// ```
562    fn asin(self) -> Self;
563
564    /// Computes the arccosine of a number. Return value is in radians in
565    /// the range [0, pi] or NaN if the number is outside the range
566    /// [-1, 1].
567    ///
568    /// # Panics
569    ///
570    /// If this type does not support a NaN representation, this function should panic
571    /// if the number is outside the range [-1, 1].
572    ///
573    /// ```
574    /// use num_traits::real::Real;
575    /// use std::f64;
576    ///
577    /// let f = f64::consts::PI / 4.0;
578    ///
579    /// // acos(cos(pi/4))
580    /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
581    ///
582    /// assert!(abs_difference < 1e-10);
583    /// ```
584    fn acos(self) -> Self;
585
586    /// Computes the arctangent of a number. Return value is in radians in the
587    /// range [-pi/2, pi/2];
588    ///
589    /// ```
590    /// use num_traits::real::Real;
591    ///
592    /// let f = 1.0;
593    ///
594    /// // atan(tan(1))
595    /// let abs_difference = (f.tan().atan() - 1.0).abs();
596    ///
597    /// assert!(abs_difference < 1e-10);
598    /// ```
599    fn atan(self) -> Self;
600
601    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
602    ///
603    /// * `x = 0`, `y = 0`: `0`
604    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
605    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
606    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
607    ///
608    /// ```
609    /// use num_traits::real::Real;
610    /// use std::f64;
611    ///
612    /// let pi = f64::consts::PI;
613    /// // All angles from horizontal right (+x)
614    /// // 45 deg counter-clockwise
615    /// let x1 = 3.0;
616    /// let y1 = -3.0;
617    ///
618    /// // 135 deg clockwise
619    /// let x2 = -3.0;
620    /// let y2 = 3.0;
621    ///
622    /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
623    /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
624    ///
625    /// assert!(abs_difference_1 < 1e-10);
626    /// assert!(abs_difference_2 < 1e-10);
627    /// ```
628    fn atan2(self, other: Self) -> Self;
629
630    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
631    /// `(sin(x), cos(x))`.
632    ///
633    /// ```
634    /// use num_traits::real::Real;
635    /// use std::f64;
636    ///
637    /// let x = f64::consts::PI/4.0;
638    /// let f = x.sin_cos();
639    ///
640    /// let abs_difference_0 = (f.0 - x.sin()).abs();
641    /// let abs_difference_1 = (f.1 - x.cos()).abs();
642    ///
643    /// assert!(abs_difference_0 < 1e-10);
644    /// assert!(abs_difference_0 < 1e-10);
645    /// ```
646    fn sin_cos(self) -> (Self, Self);
647
648    /// Returns `e^(self) - 1` in a way that is accurate even if the
649    /// number is close to zero.
650    ///
651    /// ```
652    /// use num_traits::real::Real;
653    ///
654    /// let x = 7.0;
655    ///
656    /// // e^(ln(7)) - 1
657    /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
658    ///
659    /// assert!(abs_difference < 1e-10);
660    /// ```
661    fn exp_m1(self) -> Self;
662
663    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
664    /// the operations were performed separately.
665    ///
666    /// # Panics
667    ///
668    /// If this type does not support a NaN representation, this function should panic
669    /// if `self-1 <= 0`.
670    ///
671    /// ```
672    /// use num_traits::real::Real;
673    /// use std::f64;
674    ///
675    /// let x = f64::consts::E - 1.0;
676    ///
677    /// // ln(1 + (e - 1)) == ln(e) == 1
678    /// let abs_difference = (x.ln_1p() - 1.0).abs();
679    ///
680    /// assert!(abs_difference < 1e-10);
681    /// ```
682    fn ln_1p(self) -> Self;
683
684    /// Hyperbolic sine function.
685    ///
686    /// ```
687    /// use num_traits::real::Real;
688    /// use std::f64;
689    ///
690    /// let e = f64::consts::E;
691    /// let x = 1.0;
692    ///
693    /// let f = x.sinh();
694    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
695    /// let g = (e*e - 1.0)/(2.0*e);
696    /// let abs_difference = (f - g).abs();
697    ///
698    /// assert!(abs_difference < 1e-10);
699    /// ```
700    fn sinh(self) -> Self;
701
702    /// Hyperbolic cosine function.
703    ///
704    /// ```
705    /// use num_traits::real::Real;
706    /// use std::f64;
707    ///
708    /// let e = f64::consts::E;
709    /// let x = 1.0;
710    /// let f = x.cosh();
711    /// // Solving cosh() at 1 gives this result
712    /// let g = (e*e + 1.0)/(2.0*e);
713    /// let abs_difference = (f - g).abs();
714    ///
715    /// // Same result
716    /// assert!(abs_difference < 1.0e-10);
717    /// ```
718    fn cosh(self) -> Self;
719
720    /// Hyperbolic tangent function.
721    ///
722    /// ```
723    /// use num_traits::real::Real;
724    /// use std::f64;
725    ///
726    /// let e = f64::consts::E;
727    /// let x = 1.0;
728    ///
729    /// let f = x.tanh();
730    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
731    /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
732    /// let abs_difference = (f - g).abs();
733    ///
734    /// assert!(abs_difference < 1.0e-10);
735    /// ```
736    fn tanh(self) -> Self;
737
738    /// Inverse hyperbolic sine function.
739    ///
740    /// ```
741    /// use num_traits::real::Real;
742    ///
743    /// let x = 1.0;
744    /// let f = x.sinh().asinh();
745    ///
746    /// let abs_difference = (f - x).abs();
747    ///
748    /// assert!(abs_difference < 1.0e-10);
749    /// ```
750    fn asinh(self) -> Self;
751
752    /// Inverse hyperbolic cosine function.
753    ///
754    /// ```
755    /// use num_traits::real::Real;
756    ///
757    /// let x = 1.0;
758    /// let f = x.cosh().acosh();
759    ///
760    /// let abs_difference = (f - x).abs();
761    ///
762    /// assert!(abs_difference < 1.0e-10);
763    /// ```
764    fn acosh(self) -> Self;
765
766    /// Inverse hyperbolic tangent function.
767    ///
768    /// ```
769    /// use num_traits::real::Real;
770    /// use std::f64;
771    ///
772    /// let e = f64::consts::E;
773    /// let f = e.tanh().atanh();
774    ///
775    /// let abs_difference = (f - e).abs();
776    ///
777    /// assert!(abs_difference < 1.0e-10);
778    /// ```
779    fn atanh(self) -> Self;
780}
781
782impl<T: Float> Real for T {
783    forward! {
784        Float::min_value() -> Self;
785        Float::min_positive_value() -> Self;
786        Float::epsilon() -> Self;
787        Float::max_value() -> Self;
788    }
789    forward! {
790        Float::floor(self) -> Self;
791        Float::ceil(self) -> Self;
792        Float::round(self) -> Self;
793        Float::trunc(self) -> Self;
794        Float::fract(self) -> Self;
795        Float::abs(self) -> Self;
796        Float::signum(self) -> Self;
797        Float::is_sign_positive(self) -> bool;
798        Float::is_sign_negative(self) -> bool;
799        Float::mul_add(self, a: Self, b: Self) -> Self;
800        Float::recip(self) -> Self;
801        Float::powi(self, n: i32) -> Self;
802        Float::powf(self, n: Self) -> Self;
803        Float::sqrt(self) -> Self;
804        Float::exp(self) -> Self;
805        Float::exp2(self) -> Self;
806        Float::ln(self) -> Self;
807        Float::log(self, base: Self) -> Self;
808        Float::log2(self) -> Self;
809        Float::log10(self) -> Self;
810        Float::to_degrees(self) -> Self;
811        Float::to_radians(self) -> Self;
812        Float::max(self, other: Self) -> Self;
813        Float::min(self, other: Self) -> Self;
814        Float::abs_sub(self, other: Self) -> Self;
815        Float::cbrt(self) -> Self;
816        Float::hypot(self, other: Self) -> Self;
817        Float::sin(self) -> Self;
818        Float::cos(self) -> Self;
819        Float::tan(self) -> Self;
820        Float::asin(self) -> Self;
821        Float::acos(self) -> Self;
822        Float::atan(self) -> Self;
823        Float::atan2(self, other: Self) -> Self;
824        Float::sin_cos(self) -> (Self, Self);
825        Float::exp_m1(self) -> Self;
826        Float::ln_1p(self) -> Self;
827        Float::sinh(self) -> Self;
828        Float::cosh(self) -> Self;
829        Float::tanh(self) -> Self;
830        Float::asinh(self) -> Self;
831        Float::acosh(self) -> Self;
832        Float::atanh(self) -> Self;
833    }
834}