1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
use crate::ser::ScratchSpace;
use core::{
alloc::Layout,
borrow::{Borrow, BorrowMut},
fmt,
mem::MaybeUninit,
ops,
ptr::NonNull,
slice,
};
/// A vector view into serializer scratch space.
pub struct ScratchVec<T> {
ptr: NonNull<T>,
cap: usize,
len: usize,
}
impl<T> Drop for ScratchVec<T> {
fn drop(&mut self) {
for i in 0..self.len {
unsafe {
core::ptr::drop_in_place(self.ptr.as_ptr().add(i));
}
}
}
}
// SAFETY: ScratchVec is safe to send to another thread is T is safe to send to another thread
unsafe impl<T: Send> Send for ScratchVec<T> {}
// SAFETY: ScratchVec is safe to share between threads if T is safe to share between threads
unsafe impl<T: Sync> Sync for ScratchVec<T> {}
impl<T> ScratchVec<T> {
/// Constructs a new, empty `ScratchVec` with the specified capacity.
///
/// The vector will be able to hold exactly `capacity` elements. If `capacity` is 0, the vector
/// will not allocate.
///
/// # Safety
///
/// - The vector must not outlive the given scratch space.
/// - Vectors must be dropped in the reverse order they are allocated.
#[inline]
pub unsafe fn new<S: ScratchSpace + ?Sized>(
scratch_space: &mut S,
capacity: usize,
) -> Result<Self, S::Error> {
let layout = Layout::array::<T>(capacity).unwrap();
if layout.size() == 0 {
Ok(Self {
ptr: NonNull::dangling(),
cap: capacity,
len: 0,
})
} else {
let ptr = scratch_space.push_scratch(layout)?;
Ok(Self {
ptr: ptr.cast(),
cap: capacity,
len: 0,
})
}
}
/// Frees the memory associated with the scratch vec and releases it back to the scratch space.
///
/// This must be called when serialization succeeds, but may be omitted when serialization
/// fails. In that case, the elements of the scratch vec will be dropped but the memory will not
/// be popped. It is the duty of the scratch space in that case to ensure that memory resources
/// are properly cleaned up.
///
/// # Safety
///
/// The given scratch space must be the same one used to allocate the scratch vec.
#[inline]
pub unsafe fn free<S: ScratchSpace + ?Sized>(
self,
scratch_space: &mut S,
) -> Result<(), S::Error> {
let layout = self.layout();
if layout.size() != 0 {
let ptr = self.ptr.cast();
core::mem::drop(self);
scratch_space.pop_scratch(ptr, layout)?;
}
Ok(())
}
#[inline]
fn layout(&self) -> Layout {
Layout::array::<T>(self.cap).unwrap()
}
/// Clears the vector, removing all values.
///
/// Note that this method has no effect on the allocated capacity of the vector.
#[inline]
pub fn clear(&mut self) {
self.len = 0;
}
/// Returns an unsafe mutable pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this function returns, or else
/// it will end up pointing to garbage.
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
self.ptr.as_ptr()
}
/// Extracts a mutable slice of the entire vector.
///
/// Equivalent to `&mut s[..]`.
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
}
/// Returns a raw pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this functions returns, or else
/// it will end up pointing to garbage.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to is
/// never written to (except inside an `UnsafeCell`) using this pointer or any pointer derived
/// from it. If you need to mutate the contents of the slice, use
/// [`as_mut_ptr`](ScratchVec::as_mut_ptr).
#[inline]
pub fn as_ptr(&self) -> *const T {
self.ptr.as_ptr()
}
/// Extracts a slice containing the entire vector.
///
/// Equivalent to `&s[..]`.
#[inline]
pub fn as_slice(&self) -> &[T] {
unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
}
/// Returns the number of elements the vector can hole without reallocating.
#[inline]
pub fn capacity(&self) -> usize {
self.cap
}
/// Ensures that there is capacity for at least `additional` more elements to be inserted into
/// the `ScratchVec`.
///
/// # Panics
///
/// Panics if the required capacity exceeds the available capacity.
#[inline]
pub fn reserve(&mut self, additional: usize) {
if self.len + additional > self.cap {
panic!("reserve requested more capacity than the scratch vec has available");
}
}
/// Returns `true` if the vector contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the number of elements in the vector, also referred to as its `length`.
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Copies and appends all elements in a slice to the `ScratchVec`.
///
/// The elements of the slice are appended in-order.
#[inline]
pub fn extend_from_slice(&mut self, other: &[T]) {
if !other.is_empty() {
self.reserve(other.len());
unsafe {
core::ptr::copy_nonoverlapping(
other.as_ptr(),
self.as_mut_ptr().add(self.len()),
other.len(),
);
}
self.len += other.len();
}
}
/// Removes the last element from a vector and returns it, or `None` if it is empty.
#[inline]
pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {
None
} else {
unsafe {
self.len -= 1;
Some(self.as_ptr().add(self.len()).read())
}
}
}
/// Appends an element to the back of a collection.
#[inline]
pub fn push(&mut self, value: T) {
unsafe {
self.reserve(1);
self.as_mut_ptr().add(self.len).write(value);
self.len += 1;
}
}
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
/// given `AlignedVec`. After calling `reserve_exact`, capacity will be greater than or equal
/// to `self.len() + additional`. Does nothing if the capacity is already sufficient.
///
/// # Panics
///
/// Panics if the required capacity exceeds the available capacity.
#[inline]
pub fn reserve_exact(&mut self, additional: usize) {
self.reserve(additional);
}
/// Forces the length of the vector to `new_len`.
///
/// This is a low-level operation that maintains none of the normal invariants of the type.
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`](ScratchVec::capacity)
/// - The elements at `old_len..new_len` must be initialized
#[inline]
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len;
}
// This is taken from `slice::range`, which is not yet stable.
#[inline]
fn drain_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
where
R: ops::RangeBounds<usize>,
{
let len = bounds.end;
let start: ops::Bound<&usize> = range.start_bound();
let start = match start {
ops::Bound::Included(&start) => start,
ops::Bound::Excluded(start) => start
.checked_add(1)
.unwrap_or_else(|| panic!("attempted to index slice from after maximum usize")),
ops::Bound::Unbounded => 0,
};
let end: ops::Bound<&usize> = range.end_bound();
let end = match end {
ops::Bound::Included(end) => end
.checked_add(1)
.unwrap_or_else(|| panic!("attempted to index slice up to maximum usize")),
ops::Bound::Excluded(&end) => end,
ops::Bound::Unbounded => len,
};
if start > end {
panic!("slice index starts at {} but ends at {}", start, end);
}
if end > len {
panic!(
"range start index {} out of range for slice of length {}",
end, len
);
}
ops::Range { start, end }
}
/// Creates a draining iterator that removes the specified range in the vector and yields the
/// removed items.
///
/// When the iterator **is** dropped, all elements in the range are removed from the vector,
/// even if the iterator was not fully consumed. If the iterator **is not** dropped (with
/// `mem::forget` for example), it is unspecified how many elements are removed.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if the end point is greater
/// than the length of the vector.
#[inline]
pub fn drain<R: ops::RangeBounds<usize>>(&mut self, range: R) -> Drain<'_, T> {
let len = self.len();
let ops::Range { start, end } = Self::drain_range(range, ..len);
unsafe {
self.set_len(start);
let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
Drain {
tail_start: end,
tail_len: len - end,
iter: range_slice.iter(),
vec: NonNull::from(self),
}
}
}
}
impl<T> ScratchVec<MaybeUninit<T>> {
/// Assuming that all the elements are initialized, removes the `MaybeUninit` wrapper from the
/// vector.
///
/// # Safety
///
/// It is up to the caller to guarantee that the `MaybeUninit<T>` elements really are in an
/// initialized state. Calling this when the content is not yet fully initialized causes
/// undefined behavior.
#[inline]
pub fn assume_init(self) -> ScratchVec<T> {
ScratchVec {
ptr: self.ptr.cast(),
cap: self.cap,
len: self.len,
}
}
}
impl<T> AsMut<[T]> for ScratchVec<T> {
#[inline]
fn as_mut(&mut self) -> &mut [T] {
self.as_mut_slice()
}
}
impl<T> AsRef<[T]> for ScratchVec<T> {
#[inline]
fn as_ref(&self) -> &[T] {
self.as_slice()
}
}
impl<T> Borrow<[T]> for ScratchVec<T> {
#[inline]
fn borrow(&self) -> &[T] {
self.as_slice()
}
}
impl<T> BorrowMut<[T]> for ScratchVec<T> {
#[inline]
fn borrow_mut(&mut self) -> &mut [T] {
self.as_mut_slice()
}
}
impl<T: fmt::Debug> fmt::Debug for ScratchVec<T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.as_slice().fmt(f)
}
}
impl<T> ops::Deref for ScratchVec<T> {
type Target = [T];
#[inline]
fn deref(&self) -> &Self::Target {
self.as_slice()
}
}
impl<T> ops::DerefMut for ScratchVec<T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_mut_slice()
}
}
impl<T, I: slice::SliceIndex<[T]>> ops::Index<I> for ScratchVec<T> {
type Output = <I as slice::SliceIndex<[T]>>::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
&self.as_slice()[index]
}
}
impl<T, I: slice::SliceIndex<[T]>> ops::IndexMut<I> for ScratchVec<T> {
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
&mut self.as_mut_slice()[index]
}
}
/// A draining iterator for `ScratchVec<T>`.
///
/// This `struct` is created by [`ScratchVec::drain`]. See its documentation for more.
pub struct Drain<'a, T: 'a> {
tail_start: usize,
tail_len: usize,
iter: slice::Iter<'a, T>,
vec: NonNull<ScratchVec<T>>,
}
impl<T: fmt::Debug> fmt::Debug for Drain<'_, T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
}
}
impl<T> Drain<'_, T> {
/// Returns the remaining items of this iterator as a slice.
#[inline]
pub fn as_slice(&self) -> &[T] {
self.iter.as_slice()
}
}
impl<T> AsRef<[T]> for Drain<'_, T> {
fn as_ref(&self) -> &[T] {
self.as_slice()
}
}
impl<T> Iterator for Drain<'_, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.iter
.next()
.map(|elt| unsafe { core::ptr::read(elt as *const _) })
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<T> DoubleEndedIterator for Drain<'_, T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.iter
.next_back()
.map(|elt| unsafe { core::ptr::read(elt as *const _) })
}
}
impl<T> Drop for Drain<'_, T> {
fn drop(&mut self) {
/// Continues dropping the remaining elements in the `Drain`, then moves back the
/// un-`Drain`ed elements to restore the original `Vec`.
struct DropGuard<'r, 'a, T>(&'r mut Drain<'a, T>);
impl<'r, 'a, T> Drop for DropGuard<'r, 'a, T> {
fn drop(&mut self) {
// Continue the same loop we have below. If the loop already finished, this does
// nothing.
self.0.for_each(drop);
if self.0.tail_len > 0 {
unsafe {
let source_vec = self.0.vec.as_mut();
// memmove back untouched tail, update to new length
let start = source_vec.len();
let tail = self.0.tail_start;
if tail != start {
let src = source_vec.as_ptr().add(tail);
let dst = source_vec.as_mut_ptr().add(start);
core::ptr::copy(src, dst, self.0.tail_len);
}
source_vec.set_len(start + self.0.tail_len);
}
}
}
}
// exhaust self first
while let Some(item) = self.next() {
let guard = DropGuard(self);
drop(item);
core::mem::forget(guard);
}
// Drop a `DropGuard` to move back the non-drained tail of `self`.
DropGuard(self);
}
}
impl<T> ExactSizeIterator for Drain<'_, T> {}
impl<T> core::iter::FusedIterator for Drain<'_, T> {}