typenum::type_operators

Trait Gcd

Source
pub trait Gcd<Rhs> {
    type Output;
}
Expand description

A type operator that computes the greatest common divisor of Self and Rhs.

§Example

use typenum::{Gcd, Unsigned, U12, U8};

assert_eq!(<U12 as Gcd<U8>>::Output::to_i32(), 4);

Required Associated Types§

Source

type Output

The greatest common divisor.

Implementors§

Source§

impl Gcd<Z0> for Z0

Source§

impl Gcd<UTerm> for U0

gcd(0, 0) = 0

Source§

impl<U1, U2> Gcd<NInt<U2>> for NInt<U1>
where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,

Source§

type Output = PInt<<U1 as Gcd<U2>>::Output>

Source§

impl<U1, U2> Gcd<NInt<U2>> for PInt<U1>
where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,

Source§

type Output = PInt<<U1 as Gcd<U2>>::Output>

Source§

impl<U1, U2> Gcd<PInt<U2>> for NInt<U1>
where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,

Source§

type Output = PInt<<U1 as Gcd<U2>>::Output>

Source§

impl<U1, U2> Gcd<PInt<U2>> for PInt<U1>
where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,

Source§

type Output = PInt<<U1 as Gcd<U2>>::Output>

Source§

impl<U> Gcd<NInt<U>> for Z0
where U: Unsigned + NonZero,

Source§

impl<U> Gcd<PInt<U>> for Z0
where U: Unsigned + NonZero,

Source§

impl<U> Gcd<Z0> for NInt<U>
where U: Unsigned + NonZero,

Source§

impl<U> Gcd<Z0> for PInt<U>
where U: Unsigned + NonZero,

Source§

impl<X> Gcd<UTerm> for X
where X: Unsigned + NonZero,

gcd(x, 0) = x

Source§

impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0>
where Xp: Gcd<Yp>, UInt<Xp, B0>: NonZero, UInt<Yp, B0>: NonZero,

gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even

Source§

type Output = UInt<<Xp as Gcd<Yp>>::Output, B0>

Source§

impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1>
where UInt<Xp, B1>: Gcd<Yp>, UInt<Yp, B0>: NonZero,

gcd(x, y) = gcd(x, y/2) if x odd and y even

Source§

type Output = <UInt<Xp, B1> as Gcd<Yp>>::Output

Source§

impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0>
where Xp: Gcd<UInt<Yp, B1>>, UInt<Xp, B0>: NonZero,

gcd(x, y) = gcd(x/2, y) if x even and y odd

Source§

type Output = <Xp as Gcd<UInt<Yp, B1>>>::Output

Source§

impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1>
where UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>, UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>, Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>, Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,

gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd

This will immediately invoke the case for x even and y odd because the difference of two odd numbers is an even number.

Source§

type Output = <<<UInt<Xp, B1> as Max<UInt<Yp, B1>>>::Output as Sub<<UInt<Xp, B1> as Min<UInt<Yp, B1>>>::Output>>::Output as Gcd<<UInt<Xp, B1> as Min<UInt<Yp, B1>>>::Output>>::Output

Source§

impl<Y> Gcd<Y> for U0
where Y: Unsigned + NonZero,

gcd(0, y) = y