Struct nalgebra::base::UniformNorm  
source · pub struct UniformNorm;Expand description
L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
Trait Implementations§
source§impl Clone for UniformNorm
 
impl Clone for UniformNorm
source§fn clone(&self) -> UniformNorm
 
fn clone(&self) -> UniformNorm
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
 
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from 
source. Read moresource§impl Debug for UniformNorm
 
impl Debug for UniformNorm
source§impl<T: SimdComplexField> Norm<T> for UniformNorm
 
impl<T: SimdComplexField> Norm<T> for UniformNorm
source§fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
 
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
Apply this norm to the given matrix.
source§fn metric_distance<R1, C1, S1, R2, C2, S2>(
    &self,
    m1: &Matrix<T, R1, C1, S1>,
    m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealFieldwhere
    R1: Dim,
    C1: Dim,
    S1: Storage<T, R1, C1>,
    R2: Dim,
    C2: Dim,
    S2: Storage<T, R2, C2>,
    ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
 
fn metric_distance<R1, C1, S1, R2, C2, S2>(
    &self,
    m1: &Matrix<T, R1, C1, S1>,
    m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealFieldwhere
    R1: Dim,
    C1: Dim,
    S1: Storage<T, R1, C1>,
    R2: Dim,
    C2: Dim,
    S2: Storage<T, R2, C2>,
    ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
Use the metric induced by this norm to compute the metric distance between the two given matrices.
impl Copy for UniformNorm
Auto Trait Implementations§
impl RefUnwindSafe for UniformNorm
impl Send for UniformNorm
impl Sync for UniformNorm
impl Unpin for UniformNorm
impl UnwindSafe for UniformNorm
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
 
impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
 
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
    SS: SubsetOf<SP>,
 
impl<SS, SP> SupersetOf<SS> for SPwhere
    SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
 
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct 
self from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
 
fn is_in_subset(&self) -> bool
Checks if 
self is actually part of its subset T (and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
 
fn to_subset_unchecked(&self) -> SS
Use with care! Same as 
self.to_subset but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
 
fn from_subset(element: &SS) -> SP
The inclusion map: converts 
self to the equivalent element of its superset.