pub struct UniqueEntityEquivalentVec<T>(/* private fields */)
where
T: EntityEquivalent;
Expand description
A Vec
that contains only unique entities.
“Unique” means that x != y
holds for any 2 entities in this collection.
This is always true when less than 2 entities are present.
This type is best obtained by its FromEntitySetIterator
impl, via either
EntityIterator::collect_set
or UniqueEntityEquivalentVec::from_entity_iter
.
While this type can be constructed via Iterator::collect
, doing so is inefficient,
and not recommended.
When T
is Entity
, use the UniqueEntityVec
alias.
Implementations§
Source§impl<T> UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Sourcepub const fn new() -> UniqueEntityEquivalentVec<T>
pub const fn new() -> UniqueEntityEquivalentVec<T>
Constructs a new, empty UniqueEntityEquivalentVec<T>
.
Equivalent to Vec::new
.
Sourcepub fn with_capacity(capacity: usize) -> UniqueEntityEquivalentVec<T>
pub fn with_capacity(capacity: usize) -> UniqueEntityEquivalentVec<T>
Constructs a new, empty UniqueEntityEquivalentVec<T>
with at least the specified capacity.
Equivalent to Vec::with_capacity
Sourcepub unsafe fn from_raw_parts(
ptr: *mut T,
length: usize,
capacity: usize,
) -> UniqueEntityEquivalentVec<T>
pub unsafe fn from_raw_parts( ptr: *mut T, length: usize, capacity: usize, ) -> UniqueEntityEquivalentVec<T>
Creates a UniqueEntityEquivalentVec<T>
directly from a pointer, a length, and a capacity.
Equivalent to Vec::from_raw_parts
.
§Safety
It must be safe to call Vec::from_raw_parts
with these inputs,
and the resulting Vec
must only contain unique elements.
Sourcepub unsafe fn from_vec_unchecked(vec: Vec<T>) -> UniqueEntityEquivalentVec<T>
pub unsafe fn from_vec_unchecked(vec: Vec<T>) -> UniqueEntityEquivalentVec<T>
Sourcepub fn into_inner(self) -> Vec<T>
pub fn into_inner(self) -> Vec<T>
Returns the inner Vec<T>
.
Sourcepub unsafe fn as_mut_vec(&mut self) -> &mut Vec<T>
pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<T>
Sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the total number of elements the vector can hold without reallocating.
Equivalent to Vec::capacity
.
Sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted
in the given Vec<T>
.
Equivalent to Vec::reserve
.
Sourcepub fn reserve_exact(&mut self, additional: usize)
pub fn reserve_exact(&mut self, additional: usize)
Reserves the minimum capacity for at least additional
more elements to
be inserted in the given UniqueEntityEquivalentVec<T>
.
Equivalent to Vec::reserve_exact
.
Sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional
more elements to be inserted
in the given Vec<T>
.
Equivalent to Vec::try_reserve
.
Sourcepub fn try_reserve_exact(
&mut self,
additional: usize,
) -> Result<(), TryReserveError>
pub fn try_reserve_exact( &mut self, additional: usize, ) -> Result<(), TryReserveError>
Tries to reserve the minimum capacity for at least additional
elements to be inserted in the given Vec<T>
.
Equivalent to Vec::try_reserve_exact
.
Sourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the vector as much as possible.
Equivalent to Vec::shrink_to_fit
.
Sourcepub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of the vector with a lower bound.
Equivalent to Vec::shrink_to
.
Sourcepub fn into_boxed_slice(self) -> Box<UniqueEntityEquivalentSlice<T>>
pub fn into_boxed_slice(self) -> Box<UniqueEntityEquivalentSlice<T>>
Converts the vector into Box<UniqueEntityEquivalentSlice<T>>
.
Sourcepub fn as_slice(&self) -> &UniqueEntityEquivalentSlice<T>
pub fn as_slice(&self) -> &UniqueEntityEquivalentSlice<T>
Extracts a slice containing the entire vector.
Sourcepub fn as_mut_slice(&mut self) -> &mut UniqueEntityEquivalentSlice<T>
pub fn as_mut_slice(&mut self) -> &mut UniqueEntityEquivalentSlice<T>
Extracts a mutable slice of the entire vector.
Sourcepub fn truncate(&mut self, len: usize)
pub fn truncate(&mut self, len: usize)
Shortens the vector, keeping the first len
elements and dropping
the rest.
Equivalent to Vec::truncate
.
Sourcepub fn as_ptr(&self) -> *const T
pub fn as_ptr(&self) -> *const T
Returns a raw pointer to the vector’s buffer, or a dangling raw pointer valid for zero sized reads if the vector didn’t allocate.
Equivalent to Vec::as_ptr
.
Sourcepub fn as_mut_ptr(&mut self) -> *mut T
pub fn as_mut_ptr(&mut self) -> *mut T
Returns a raw mutable pointer to the vector’s buffer, or a dangling raw pointer valid for zero sized reads if the vector didn’t allocate.
Equivalent to Vec::as_mut_ptr
.
Sourcepub unsafe fn set_len(&mut self, new_len: usize)
pub unsafe fn set_len(&mut self, new_len: usize)
Forces the length of the vector to new_len
.
Equivalent to Vec::set_len
.
§Safety
It must be safe to call Vec::set_len
with these inputs,
and the resulting Vec
must only contain unique elements.
Sourcepub fn swap_remove(&mut self, index: usize) -> T
pub fn swap_remove(&mut self, index: usize) -> T
Removes an element from the vector and returns it.
Equivalent to Vec::swap_remove
.
Sourcepub unsafe fn insert(&mut self, index: usize, element: T)
pub unsafe fn insert(&mut self, index: usize, element: T)
Inserts an element at position index
within the vector, shifting all
elements after it to the right.
Equivalent to Vec::insert
.
§Safety
No T
contained by self
may equal element
.
Sourcepub fn remove(&mut self, index: usize) -> T
pub fn remove(&mut self, index: usize) -> T
Removes and returns the element at position index
within the vector,
shifting all elements after it to the left.
Equivalent to Vec::remove
.
Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
Equivalent to Vec::retain
.
Sourcepub unsafe fn retain_mut<F>(&mut self, f: F)
pub unsafe fn retain_mut<F>(&mut self, f: F)
Retains only the elements specified by the predicate, passing a mutable reference to it.
Equivalent to Vec::retain_mut
.
§Safety
self
must only contain unique elements after each individual execution of f
.
Sourcepub unsafe fn dedup_by_key<F, K>(&mut self, key: F)
pub unsafe fn dedup_by_key<F, K>(&mut self, key: F)
Removes all but the first of consecutive elements in the vector that resolve to the same key.
Equivalent to Vec::dedup_by_key
.
§Safety
self
must only contain unique elements after each individual execution of key
.
Sourcepub unsafe fn dedup_by<F>(&mut self, same_bucket: F)
pub unsafe fn dedup_by<F>(&mut self, same_bucket: F)
Removes all but the first of consecutive elements in the vector satisfying a given equality relation.
Equivalent to Vec::dedup_by
.
§Safety
self
must only contain unique elements after each individual execution of same_bucket
.
Sourcepub unsafe fn append(&mut self, other: &mut UniqueEntityEquivalentVec<T>)
pub unsafe fn append(&mut self, other: &mut UniqueEntityEquivalentVec<T>)
Moves all the elements of other
into self
, leaving other
empty.
Equivalent to Vec::append
.
§Safety
other
must contain no elements that equal any element in self
.
Sourcepub fn drain<R>(&mut self, range: R) -> UniqueEntityIter<Drain<'_, T>> ⓘwhere
R: RangeBounds<usize>,
pub fn drain<R>(&mut self, range: R) -> UniqueEntityIter<Drain<'_, T>> ⓘwhere
R: RangeBounds<usize>,
Removes the specified range from the vector in bulk, returning all removed elements as an iterator.
Equivalent to Vec::drain
.
Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Clears the vector, removing all values.
Equivalent to Vec::clear
.
Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the vector, also referred to as its ‘length’.
Equivalent to Vec::len
.
Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the vector contains no elements.
Equivalent to Vec::is_empty
.
Sourcepub fn split_off(&mut self, at: usize) -> UniqueEntityEquivalentVec<T>
pub fn split_off(&mut self, at: usize) -> UniqueEntityEquivalentVec<T>
Splits the collection into two at the given index.
Equivalent to Vec::split_off
.
Sourcepub unsafe fn resize_with<F>(&mut self, new_len: usize, f: F)where
F: FnMut() -> T,
pub unsafe fn resize_with<F>(&mut self, new_len: usize, f: F)where
F: FnMut() -> T,
Resizes the Vec
in-place so that len
is equal to new_len
.
Equivalent to Vec::resize_with
.
§Safety
f
must only produce unique T
, and none of these may equal any T
in self
.
Sourcepub fn leak<'a>(self) -> &'a mut UniqueEntityEquivalentSlice<T>
pub fn leak<'a>(self) -> &'a mut UniqueEntityEquivalentSlice<T>
Consumes and leaks the Vec, returning a mutable reference to the contents, &'a mut UniqueEntityEquivalentSlice<T>
.
Sourcepub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]
Returns the remaining spare capacity of the vector as a slice of
MaybeUninit<T>
.
Equivalent to Vec::spare_capacity_mut
.
Sourcepub unsafe fn splice<R, I>(
&mut self,
range: R,
replace_with: I,
) -> UniqueEntityIter<Splice<'_, <I as IntoIterator>::IntoIter>> ⓘ
pub unsafe fn splice<R, I>( &mut self, range: R, replace_with: I, ) -> UniqueEntityIter<Splice<'_, <I as IntoIterator>::IntoIter>> ⓘ
Creates a splicing iterator that replaces the specified range in the vector
with the given replace_with
iterator and yields the removed items.
Equivalent to Vec::splice
.
§Safety
replace_with
must not yield any elements that equal any elements in self
,
except for those in range
.
Methods from Deref<Target = UniqueEntityEquivalentSlice<T>>§
Sourcepub fn into_rc_inner(self: Rc<UniqueEntityEquivalentSlice<T>>) -> Rc<[T]>
pub fn into_rc_inner(self: Rc<UniqueEntityEquivalentSlice<T>>) -> Rc<[T]>
Casts self
to the inner slice.
Sourcepub fn split_first(&self) -> Option<(&T, &UniqueEntityEquivalentSlice<T>)>
pub fn split_first(&self) -> Option<(&T, &UniqueEntityEquivalentSlice<T>)>
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Equivalent to [T]::split_first
.
Sourcepub fn split_last(&self) -> Option<(&T, &UniqueEntityEquivalentSlice<T>)>
pub fn split_last(&self) -> Option<(&T, &UniqueEntityEquivalentSlice<T>)>
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Equivalent to [T]::split_last
.
Sourcepub fn first_chunk<const N: usize>(
&self,
) -> Option<&UniqueEntityEquivalentArray<T, N>>
pub fn first_chunk<const N: usize>( &self, ) -> Option<&UniqueEntityEquivalentArray<T, N>>
Returns an array reference to the first N
items in the slice.
Equivalent to [T]::first_chunk
.
Sourcepub fn split_first_chunk<const N: usize>(
&self,
) -> Option<(&UniqueEntityEquivalentArray<T, N>, &UniqueEntityEquivalentSlice<T>)>
pub fn split_first_chunk<const N: usize>( &self, ) -> Option<(&UniqueEntityEquivalentArray<T, N>, &UniqueEntityEquivalentSlice<T>)>
Returns an array reference to the first N
items in the slice and the remaining slice.
Equivalent to [T]::split_first_chunk
.
Sourcepub fn split_last_chunk<const N: usize>(
&self,
) -> Option<(&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentArray<T, N>)>
pub fn split_last_chunk<const N: usize>( &self, ) -> Option<(&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentArray<T, N>)>
Returns an array reference to the last N
items in the slice and the remaining slice.
Equivalent to [T]::split_last_chunk
.
Sourcepub fn last_chunk<const N: usize>(
&self,
) -> Option<&UniqueEntityEquivalentArray<T, N>>
pub fn last_chunk<const N: usize>( &self, ) -> Option<&UniqueEntityEquivalentArray<T, N>>
Returns an array reference to the last N
items in the slice.
Equivalent to [T]::last_chunk
.
Sourcepub fn get<I>(&self, index: I) -> Option<&UniqueEntityEquivalentSlice<T>>
pub fn get<I>(&self, index: I) -> Option<&UniqueEntityEquivalentSlice<T>>
Returns a reference to a subslice.
Equivalent to the range functionality of [[T]::get
].
Note that only the inner [[T]::get
] supports indexing with a usize
.
[[T]::get
]: slice::get
Sourcepub fn get_mut<I>(
&mut self,
index: I,
) -> Option<&mut UniqueEntityEquivalentSlice<T>>
pub fn get_mut<I>( &mut self, index: I, ) -> Option<&mut UniqueEntityEquivalentSlice<T>>
Returns a mutable reference to a subslice.
Equivalent to the range functionality of [[T]::get_mut
].
Note that UniqueEntityEquivalentSlice::get_mut
cannot be called with a usize
.
[[T]::get_mut
]: slice::get_mut
s
Sourcepub unsafe fn get_unchecked<I>(
&self,
index: I,
) -> &UniqueEntityEquivalentSlice<T>
pub unsafe fn get_unchecked<I>( &self, index: I, ) -> &UniqueEntityEquivalentSlice<T>
Returns a reference to a subslice, without doing bounds checking.
Equivalent to the range functionality of [[T]::get_unchecked
].
Note that only the inner [[T]::get_unchecked
] supports indexing with a usize
.
§Safety
index
must be safe to use with [[T]::get_unchecked
]
[[T]::get_unchecked
]: slice::get_unchecked
Sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I,
) -> &mut UniqueEntityEquivalentSlice<T>
pub unsafe fn get_unchecked_mut<I>( &mut self, index: I, ) -> &mut UniqueEntityEquivalentSlice<T>
Returns a mutable reference to a subslice, without doing bounds checking.
Equivalent to the range functionality of [[T]::get_unchecked_mut
].
Note that UniqueEntityEquivalentSlice::get_unchecked_mut
cannot be called with an index.
§Safety
index
must be safe to use with [[T]::get_unchecked_mut
]
[[T]::get_unchecked_mut
]: slice::get_unchecked_mut
Sourcepub fn as_mut_ptr(&mut self) -> *mut T
pub fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice’s buffer.
Sourcepub fn as_mut_ptr_range(&mut self) -> Range<*mut T> ⓘ
pub fn as_mut_ptr_range(&mut self) -> Range<*mut T> ⓘ
Returns the two unsafe mutable pointers spanning the slice.
Sourcepub fn iter(&self) -> UniqueEntityIter<Iter<'_, T>> ⓘ
pub fn iter(&self) -> UniqueEntityIter<Iter<'_, T>> ⓘ
Returns an iterator over the slice.
Sourcepub fn windows(
&self,
size: usize,
) -> UniqueEntityEquivalentSliceIter<'_, T, Windows<'_, T>> ⓘ
pub fn windows( &self, size: usize, ) -> UniqueEntityEquivalentSliceIter<'_, T, Windows<'_, T>> ⓘ
Returns an iterator over all contiguous windows of length
size
.
Equivalent to [[T]::windows
].
[[T]::windows
]: slice::windows
Sourcepub fn chunks(
&self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIter<'_, T, Chunks<'_, T>> ⓘ
pub fn chunks( &self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIter<'_, T, Chunks<'_, T>> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
Equivalent to [[T]::chunks
].
[[T]::chunks
]: slice::chunks
Sourcepub fn chunks_mut(
&mut self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, ChunksMut<'_, T>> ⓘ
pub fn chunks_mut( &mut self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, ChunksMut<'_, T>> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
Equivalent to [[T]::chunks_mut
].
[[T]::chunks_mut
]: slice::chunks_mut
Sourcepub fn chunks_exact(
&self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIter<'_, T, ChunksExact<'_, T>> ⓘ
pub fn chunks_exact( &self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIter<'_, T, ChunksExact<'_, T>> ⓘ
Equivalent to [[T]::chunks_exact
].
[[T]::chunks_exact
]: slice::chunks_exact
Sourcepub fn chunks_exact_mut(
&mut self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, ChunksExactMut<'_, T>> ⓘ
pub fn chunks_exact_mut( &mut self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, ChunksExactMut<'_, T>> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
Equivalent to [[T]::chunks_exact_mut
].
[[T]::chunks_exact_mut
]: slice::chunks_exact_mut
Sourcepub fn rchunks(
&self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIter<'_, T, RChunks<'_, T>> ⓘ
pub fn rchunks( &self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIter<'_, T, RChunks<'_, T>> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
Equivalent to [[T]::rchunks
].
[[T]::rchunks
]: slice::rchunks
Sourcepub fn rchunks_mut(
&mut self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, RChunksMut<'_, T>> ⓘ
pub fn rchunks_mut( &mut self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, RChunksMut<'_, T>> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
Equivalent to [[T]::rchunks_mut
].
[[T]::rchunks_mut
]: slice::rchunks_mut
Sourcepub fn rchunks_exact(
&self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIter<'_, T, RChunksExact<'_, T>> ⓘ
pub fn rchunks_exact( &self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIter<'_, T, RChunksExact<'_, T>> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
end of the slice.
Equivalent to [[T]::rchunks_exact
].
[[T]::rchunks_exact
]: slice::rchunks_exact
Sourcepub fn rchunks_exact_mut(
&mut self,
chunk_size: usize,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, RChunksExactMut<'_, T>> ⓘ
pub fn rchunks_exact_mut( &mut self, chunk_size: usize, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, RChunksExactMut<'_, T>> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
Equivalent to [[T]::rchunks_exact_mut
].
[[T]::rchunks_exact_mut
]: slice::rchunks_exact_mut
Sourcepub fn chunk_by<F>(
&self,
pred: F,
) -> UniqueEntityEquivalentSliceIter<'_, T, ChunkBy<'_, T, F>> ⓘ
pub fn chunk_by<F>( &self, pred: F, ) -> UniqueEntityEquivalentSliceIter<'_, T, ChunkBy<'_, T, F>> ⓘ
Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.
Equivalent to [[T]::chunk_by
].
[[T]::chunk_by
]: slice::chunk_by
Sourcepub fn chunk_by_mut<F>(
&mut self,
pred: F,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, ChunkByMut<'_, T, F>> ⓘ
pub fn chunk_by_mut<F>( &mut self, pred: F, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, ChunkByMut<'_, T, F>> ⓘ
Returns an iterator over the slice producing non-overlapping mutable runs of elements using the predicate to separate them.
Equivalent to [[T]::chunk_by_mut
].
[[T]::chunk_by_mut
]: slice::chunk_by_mut
Sourcepub fn split_at(
&self,
mid: usize,
) -> (&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentSlice<T>)
pub fn split_at( &self, mid: usize, ) -> (&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentSlice<T>)
Divides one slice into two at an index.
Equivalent to [T]::split_at
.
Sourcepub fn split_at_mut(
&mut self,
mid: usize,
) -> (&mut UniqueEntityEquivalentSlice<T>, &mut UniqueEntityEquivalentSlice<T>)
pub fn split_at_mut( &mut self, mid: usize, ) -> (&mut UniqueEntityEquivalentSlice<T>, &mut UniqueEntityEquivalentSlice<T>)
Divides one mutable slice into two at an index.
Equivalent to [T]::split_at_mut
.
Sourcepub unsafe fn split_at_unchecked(
&self,
mid: usize,
) -> (&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentSlice<T>)
pub unsafe fn split_at_unchecked( &self, mid: usize, ) -> (&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentSlice<T>)
Divides one slice into two at an index, without doing bounds checking.
Equivalent to [T]::split_at_unchecked
.
§Safety
mid
must be safe to use in [[T]::split_at_unchecked
].
[[T]::split_at_unchecked
]: slice::split_at_unchecked
Sourcepub unsafe fn split_at_mut_unchecked(
&mut self,
mid: usize,
) -> (&mut UniqueEntityEquivalentSlice<T>, &mut UniqueEntityEquivalentSlice<T>)
pub unsafe fn split_at_mut_unchecked( &mut self, mid: usize, ) -> (&mut UniqueEntityEquivalentSlice<T>, &mut UniqueEntityEquivalentSlice<T>)
Divides one mutable slice into two at an index, without doing bounds checking.
Equivalent to [T]::split_at_mut_unchecked
.
§Safety
mid
must be safe to use in [[T]::split_at_mut_unchecked
].
[[T]::split_at_mut_unchecked
]: slice::split_at_mut_unchecked
Sourcepub fn split_at_checked(
&self,
mid: usize,
) -> Option<(&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentSlice<T>)>
pub fn split_at_checked( &self, mid: usize, ) -> Option<(&UniqueEntityEquivalentSlice<T>, &UniqueEntityEquivalentSlice<T>)>
Divides one slice into two at an index, returning None
if the slice is
too short.
Equivalent to [T]::split_at_checked
.
Sourcepub fn split_at_mut_checked(
&mut self,
mid: usize,
) -> Option<(&mut UniqueEntityEquivalentSlice<T>, &mut UniqueEntityEquivalentSlice<T>)>
pub fn split_at_mut_checked( &mut self, mid: usize, ) -> Option<(&mut UniqueEntityEquivalentSlice<T>, &mut UniqueEntityEquivalentSlice<T>)>
Divides one mutable slice into two at an index, returning None
if the
slice is too short.
Equivalent to [T]::split_at_mut_checked
.
Sourcepub fn split<F>(
&self,
pred: F,
) -> UniqueEntityEquivalentSliceIter<'_, T, Split<'_, T, F>> ⓘ
pub fn split<F>( &self, pred: F, ) -> UniqueEntityEquivalentSliceIter<'_, T, Split<'_, T, F>> ⓘ
Returns an iterator over subslices separated by elements that match
pred
.
Equivalent to [[T]::split
].
[[T]::split
]: slice::split
Sourcepub fn split_mut<F>(
&mut self,
pred: F,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, SplitMut<'_, T, F>> ⓘ
pub fn split_mut<F>( &mut self, pred: F, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, SplitMut<'_, T, F>> ⓘ
Returns an iterator over mutable subslices separated by elements that
match pred
.
Equivalent to [[T]::split_mut
].
[[T]::split_mut
]: slice::split_mut
Sourcepub fn split_inclusive<F>(
&self,
pred: F,
) -> UniqueEntityEquivalentSliceIter<'_, T, SplitInclusive<'_, T, F>> ⓘ
pub fn split_inclusive<F>( &self, pred: F, ) -> UniqueEntityEquivalentSliceIter<'_, T, SplitInclusive<'_, T, F>> ⓘ
Returns an iterator over subslices separated by elements that match
pred
.
Equivalent to [[T]::split_inclusive
].
[[T]::split_inclusive
]: slice::split_inclusive
Sourcepub fn split_inclusive_mut<F>(
&mut self,
pred: F,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, SplitInclusiveMut<'_, T, F>> ⓘ
pub fn split_inclusive_mut<F>( &mut self, pred: F, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, SplitInclusiveMut<'_, T, F>> ⓘ
Returns an iterator over mutable subslices separated by elements that
match pred
.
Equivalent to [[T]::split_inclusive_mut
].
[[T]::split_inclusive_mut
]: slice::split_inclusive_mut
Sourcepub fn rsplit<F>(
&self,
pred: F,
) -> UniqueEntityEquivalentSliceIter<'_, T, RSplit<'_, T, F>> ⓘ
pub fn rsplit<F>( &self, pred: F, ) -> UniqueEntityEquivalentSliceIter<'_, T, RSplit<'_, T, F>> ⓘ
Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
Equivalent to [[T]::rsplit
].
[[T]::rsplit
]: slice::rsplit
Sourcepub fn rsplit_mut<F>(
&mut self,
pred: F,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, RSplitMut<'_, T, F>> ⓘ
pub fn rsplit_mut<F>( &mut self, pred: F, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, RSplitMut<'_, T, F>> ⓘ
Returns an iterator over mutable subslices separated by elements that
match pred
, starting at the end of the slice and working
backwards.
Equivalent to [[T]::rsplit_mut
].
[[T]::rsplit_mut
]: slice::rsplit_mut
Sourcepub fn splitn<F>(
&self,
n: usize,
pred: F,
) -> UniqueEntityEquivalentSliceIter<'_, T, SplitN<'_, T, F>> ⓘ
pub fn splitn<F>( &self, n: usize, pred: F, ) -> UniqueEntityEquivalentSliceIter<'_, T, SplitN<'_, T, F>> ⓘ
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items.
Equivalent to [[T]::splitn
].
[[T]::splitn
]: slice::splitn
Sourcepub fn splitn_mut<F>(
&mut self,
n: usize,
pred: F,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, SplitNMut<'_, T, F>> ⓘ
pub fn splitn_mut<F>( &mut self, n: usize, pred: F, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, SplitNMut<'_, T, F>> ⓘ
Returns an iterator over mutable subslices separated by elements that match
pred
, limited to returning at most n
items.
Equivalent to [[T]::splitn_mut
].
[[T]::splitn_mut
]: slice::splitn_mut
Sourcepub fn rsplitn<F>(
&self,
n: usize,
pred: F,
) -> UniqueEntityEquivalentSliceIter<'_, T, RSplitN<'_, T, F>> ⓘ
pub fn rsplitn<F>( &self, n: usize, pred: F, ) -> UniqueEntityEquivalentSliceIter<'_, T, RSplitN<'_, T, F>> ⓘ
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items.
Equivalent to [[T]::rsplitn
].
[[T]::rsplitn
]: slice::rsplitn
Sourcepub fn rsplitn_mut<F>(
&mut self,
n: usize,
pred: F,
) -> UniqueEntityEquivalentSliceIterMut<'_, T, RSplitNMut<'_, T, F>> ⓘ
pub fn rsplitn_mut<F>( &mut self, n: usize, pred: F, ) -> UniqueEntityEquivalentSliceIterMut<'_, T, RSplitNMut<'_, T, F>> ⓘ
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items.
Equivalent to [[T]::rsplitn_mut
].
[[T]::rsplitn_mut
]: slice::rsplitn_mut
Sourcepub fn sort_unstable(&mut self)where
T: Ord,
pub fn sort_unstable(&mut self)where
T: Ord,
Sorts the slice without preserving the initial order of equal elements.
Equivalent to [T]::sort_unstable
.
Sourcepub fn sort_unstable_by<F>(&mut self, compare: F)
pub fn sort_unstable_by<F>(&mut self, compare: F)
Sorts the slice with a comparison function, without preserving the initial order of equal elements.
Equivalent to [T]::sort_unstable_by
.
Sourcepub fn sort_unstable_by_key<K, F>(&mut self, f: F)
pub fn sort_unstable_by_key<K, F>(&mut self, f: F)
Sorts the slice with a key extraction function, without preserving the initial order of equal elements.
Equivalent to [T]::sort_unstable_by_key
.
Sourcepub fn rotate_left(&mut self, mid: usize)
pub fn rotate_left(&mut self, mid: usize)
Rotates the slice in-place such that the first mid
elements of the
slice move to the end while the last self.len() - mid
elements move to
the front.
Equivalent to [T]::rotate_left
.
Sourcepub fn rotate_right(&mut self, mid: usize)
pub fn rotate_right(&mut self, mid: usize)
Rotates the slice in-place such that the first self.len() - k
elements of the slice move to the end while the last k
elements move
to the front.
Equivalent to [T]::rotate_right
.
Sourcepub fn sort(&mut self)where
T: Ord,
pub fn sort(&mut self)where
T: Ord,
Sorts the slice, preserving initial order of equal elements.
Equivalent to [T]::sort
.
Sourcepub fn sort_by<F>(&mut self, compare: F)
pub fn sort_by<F>(&mut self, compare: F)
Sorts the slice with a comparison function, preserving initial order of equal elements.
Equivalent to [T]::sort_by
.
Sourcepub fn sort_by_key<K, F>(&mut self, f: F)
pub fn sort_by_key<K, F>(&mut self, f: F)
Sorts the slice with a key extraction function, preserving initial order of equal elements.
Equivalent to [T]::sort_by_key
.
Sourcepub fn sort_by_cached_key<K, F>(&mut self, f: F)
pub fn sort_by_cached_key<K, F>(&mut self, f: F)
Equivalent to [T]::sort_by_cached_key
.
Sourcepub fn to_vec(&self) -> UniqueEntityEquivalentVec<T>where
T: Clone,
pub fn to_vec(&self) -> UniqueEntityEquivalentVec<T>where
T: Clone,
Copies self into a new UniqueEntityEquivalentVec
.
Methods from Deref<Target = [T]>§
1.0.0 · Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the slice has a length of 0.
§Examples
let a = [1, 2, 3];
assert!(!a.is_empty());
let b: &[i32] = &[];
assert!(b.is_empty());
1.0.0 · Sourcepub fn first(&self) -> Option<&T>
pub fn first(&self) -> Option<&T>
Returns the first element of the slice, or None
if it is empty.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());
let w: &[i32] = &[];
assert_eq!(None, w.first());
1.5.0 · Sourcepub fn split_first(&self) -> Option<(&T, &[T])>
pub fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
§Examples
let x = &[0, 1, 2];
if let Some((first, elements)) = x.split_first() {
assert_eq!(first, &0);
assert_eq!(elements, &[1, 2]);
}
1.5.0 · Sourcepub fn split_last(&self) -> Option<(&T, &[T])>
pub fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
§Examples
let x = &[0, 1, 2];
if let Some((last, elements)) = x.split_last() {
assert_eq!(last, &2);
assert_eq!(elements, &[0, 1]);
}
1.0.0 · Sourcepub fn last(&self) -> Option<&T>
pub fn last(&self) -> Option<&T>
Returns the last element of the slice, or None
if it is empty.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());
let w: &[i32] = &[];
assert_eq!(None, w.last());
1.77.0 · Sourcepub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>
pub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>
Returns an array reference to the first N
items in the slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
let v: &[i32] = &[10];
assert_eq!(None, v.first_chunk::<2>());
let w: &[i32] = &[];
assert_eq!(Some(&[]), w.first_chunk::<0>());
1.77.0 · Sourcepub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>
pub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>
Returns an array reference to the first N
items in the slice and the remaining slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &[0, 1, 2];
if let Some((first, elements)) = x.split_first_chunk::<2>() {
assert_eq!(first, &[0, 1]);
assert_eq!(elements, &[2]);
}
assert_eq!(None, x.split_first_chunk::<4>());
1.77.0 · Sourcepub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>
pub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>
Returns an array reference to the last N
items in the slice and the remaining slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &[0, 1, 2];
if let Some((elements, last)) = x.split_last_chunk::<2>() {
assert_eq!(elements, &[0]);
assert_eq!(last, &[1, 2]);
}
assert_eq!(None, x.split_last_chunk::<4>());
1.77.0 · Sourcepub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>
pub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>
Returns an array reference to the last N
items in the slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
let v: &[i32] = &[10];
assert_eq!(None, v.last_chunk::<2>());
let w: &[i32] = &[];
assert_eq!(Some(&[]), w.last_chunk::<0>());
1.0.0 · Sourcepub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));
1.0.0 · Sourcepub unsafe fn get_unchecked<I>(
&self,
index: I,
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
pub unsafe fn get_unchecked<I>(
&self,
index: I,
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
For a safe alternative see get
.
§Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
You can think of this like .get(index).unwrap_unchecked()
. It’s UB
to call .get_unchecked(len)
, even if you immediately convert to a
pointer. And it’s UB to call .get_unchecked(..len + 1)
,
.get_unchecked(..=len)
, or similar.
§Examples
let x = &[1, 2, 4];
unsafe {
assert_eq!(x.get_unchecked(1), &2);
}
1.0.0 · Sourcepub fn as_ptr(&self) -> *const T
pub fn as_ptr(&self) -> *const T
Returns a raw pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up dangling.
The caller must also ensure that the memory the pointer (non-transitively) points to
is never written to (except inside an UnsafeCell
) using this pointer or any pointer
derived from it. If you need to mutate the contents of the slice, use as_mut_ptr
.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
§Examples
let x = &[1, 2, 4];
let x_ptr = x.as_ptr();
unsafe {
for i in 0..x.len() {
assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
}
}
1.48.0 · Sourcepub fn as_ptr_range(&self) -> Range<*const T> ⓘ
pub fn as_ptr_range(&self) -> Range<*const T> ⓘ
Returns the two raw pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_ptr
for warnings on using these pointers. The end pointer
requires extra caution, as it does not point to a valid element in the
slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
It can also be useful to check if a pointer to an element refers to an element of this slice:
let a = [1, 2, 3];
let x = &a[1] as *const _;
let y = &5 as *const _;
assert!(a.as_ptr_range().contains(&x));
assert!(!a.as_ptr_range().contains(&y));
Sourcepub fn as_array<const N: usize>(&self) -> Option<&[T; N]>
🔬This is a nightly-only experimental API. (slice_as_array
)
pub fn as_array<const N: usize>(&self) -> Option<&[T; N]>
slice_as_array
)Gets a reference to the underlying array.
If N
is not exactly equal to the length of self
, then this method returns None
.
1.0.0 · Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
pub fn iter(&self) -> Iter<'_, T> ⓘ
Returns an iterator over the slice.
The iterator yields all items from start to end.
§Examples
let x = &[1, 2, 4];
let mut iterator = x.iter();
assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);
1.0.0 · Sourcepub fn windows(&self, size: usize) -> Windows<'_, T> ⓘ
pub fn windows(&self, size: usize) -> Windows<'_, T> ⓘ
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
§Panics
Panics if size
is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.windows(3);
assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());
Because the Iterator trait cannot represent the required lifetimes,
there is no windows_mut
analog to windows
;
[0,1,2].windows_mut(2).collect()
would violate the rules of references
(though a LendingIterator analog is possible). You can sometimes use
Cell::as_slice_of_cells
in
conjunction with windows
instead:
use std::cell::Cell;
let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
let slice = &mut array[..];
let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
for w in slice_of_cells.windows(3) {
Cell::swap(&w[0], &w[2]);
}
assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1.0.0 · Sourcepub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> ⓘ
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See chunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and rchunks
for the same iterator but starting at the end of the
slice.
§Panics
Panics if chunk_size
is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());
1.31.0 · Sourcepub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> ⓘ
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks
.
See chunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and rchunks_exact
for the same iterator but starting at the end of the slice.
§Panics
Panics if chunk_size
is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
Sourcepub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
assuming that there’s no remainder.
§Safety
This may only be called when
- The slice splits exactly into
N
-element chunks (akaself.len() % N == 0
). N != 0
.
§Examples
#![feature(slice_as_chunks)]
let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &[[char; 1]] =
// SAFETY: 1-element chunks never have remainder
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &[[char; 3]] =
// SAFETY: The slice length (6) is a multiple of 3
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
Sourcepub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N
.
§Panics
Panics if N
is zero. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (chunks, remainder) = slice.as_chunks();
assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
assert_eq!(remainder, &['m']);
If you expect the slice to be an exact multiple, you can combine
let
-else
with an empty slice pattern:
#![feature(slice_as_chunks)]
let slice = ['R', 'u', 's', 't'];
let (chunks, []) = slice.as_chunks::<2>() else {
panic!("slice didn't have even length")
};
assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
Sourcepub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N
.
§Panics
Panics if N
is zero. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (remainder, chunks) = slice.as_rchunks();
assert_eq!(remainder, &['l']);
assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
Sourcepub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> ⓘ
🔬This is a nightly-only experimental API. (array_chunks
)
pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> ⓘ
array_chunks
)Returns an iterator over N
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are array references and do not overlap. If N
does not divide the
length of the slice, then the last up to N-1
elements will be omitted and can be
retrieved from the remainder
function of the iterator.
This method is the const generic equivalent of chunks_exact
.
§Panics
Panics if N
is zero. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(array_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.array_chunks();
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
Sourcepub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> ⓘ
🔬This is a nightly-only experimental API. (array_windows
)
pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> ⓘ
array_windows
)Returns an iterator over overlapping windows of N
elements of a slice,
starting at the beginning of the slice.
This is the const generic equivalent of windows
.
If N
is greater than the size of the slice, it will return no windows.
§Panics
Panics if N
is zero. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(array_windows)]
let slice = [0, 1, 2, 3];
let mut iter = slice.array_windows();
assert_eq!(iter.next().unwrap(), &[0, 1]);
assert_eq!(iter.next().unwrap(), &[1, 2]);
assert_eq!(iter.next().unwrap(), &[2, 3]);
assert!(iter.next().is_none());
1.31.0 · Sourcepub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> ⓘ
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See rchunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and chunks
for the same iterator but starting at the beginning
of the slice.
§Panics
Panics if chunk_size
is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());
1.31.0 · Sourcepub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> ⓘ
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> ⓘ
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
end of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of rchunks
.
See rchunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and chunks_exact
for the same iterator but starting at the beginning of the
slice.
§Panics
Panics if chunk_size
is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);
1.77.0 · Sourcepub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F> ⓘ
pub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F> ⓘ
Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.
The predicate is called for every pair of consecutive elements,
meaning that it is called on slice[0]
and slice[1]
,
followed by slice[1]
and slice[2]
, and so on.
§Examples
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.chunk_by(|a, b| a == b);
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);
This method can be used to extract the sorted subslices:
let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
let mut iter = slice.chunk_by(|a, b| a <= b);
assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
assert_eq!(iter.next(), None);
1.0.0 · Sourcepub fn split_at(&self, mid: usize) -> (&[T], &[T])
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
§Panics
Panics if mid > len
. For a non-panicking alternative see
split_at_checked
.
§Examples
let v = ['a', 'b', 'c'];
{
let (left, right) = v.split_at(0);
assert_eq!(left, []);
assert_eq!(right, ['a', 'b', 'c']);
}
{
let (left, right) = v.split_at(2);
assert_eq!(left, ['a', 'b']);
assert_eq!(right, ['c']);
}
{
let (left, right) = v.split_at(3);
assert_eq!(left, ['a', 'b', 'c']);
assert_eq!(right, []);
}
1.79.0 · Sourcepub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index, without doing bounds checking.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
For a safe alternative see split_at
.
§Safety
Calling this method with an out-of-bounds index is undefined behavior
even if the resulting reference is not used. The caller has to ensure that
0 <= mid <= self.len()
.
§Examples
let v = ['a', 'b', 'c'];
unsafe {
let (left, right) = v.split_at_unchecked(0);
assert_eq!(left, []);
assert_eq!(right, ['a', 'b', 'c']);
}
unsafe {
let (left, right) = v.split_at_unchecked(2);
assert_eq!(left, ['a', 'b']);
assert_eq!(right, ['c']);
}
unsafe {
let (left, right) = v.split_at_unchecked(3);
assert_eq!(left, ['a', 'b', 'c']);
assert_eq!(right, []);
}
1.80.0 · Sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>
pub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>
Divides one slice into two at an index, returning None
if the slice is
too short.
If mid ≤ len
returns a pair of slices where the first will contain all
indices from [0, mid)
(excluding the index mid
itself) and the
second will contain all indices from [mid, len)
(excluding the index
len
itself).
Otherwise, if mid > len
, returns None
.
§Examples
let v = [1, -2, 3, -4, 5, -6];
{
let (left, right) = v.split_at_checked(0).unwrap();
assert_eq!(left, []);
assert_eq!(right, [1, -2, 3, -4, 5, -6]);
}
{
let (left, right) = v.split_at_checked(2).unwrap();
assert_eq!(left, [1, -2]);
assert_eq!(right, [3, -4, 5, -6]);
}
{
let (left, right) = v.split_at_checked(6).unwrap();
assert_eq!(left, [1, -2, 3, -4, 5, -6]);
assert_eq!(right, []);
}
assert_eq!(None, v.split_at_checked(7));
1.0.0 · Sourcepub fn split<F>(&self, pred: F) -> Split<'_, T, F> ⓘ
pub fn split<F>(&self, pred: F) -> Split<'_, T, F> ⓘ
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
1.51.0 · Sourcepub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F> ⓘ
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F> ⓘ
Returns an iterator over subslices separated by elements that match
pred
. The matched element is contained in the end of the previous
subslice as a terminator.
§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.
let slice = [3, 10, 40, 33];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[3]);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert!(iter.next().is_none());
1.27.0 · Sourcepub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F> ⓘ
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F> ⓘ
Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
§Examples
let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);
assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);
1.0.0 · Sourcepub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F> ⓘ
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F> ⓘ
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
Print the slice split once by numbers divisible by 3 (i.e., [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}
1.0.0 · Sourcepub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F> ⓘ
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F> ⓘ
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e., [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}
Sourcepub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
🔬This is a nightly-only experimental API. (slice_split_once
)
pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
slice_split_once
)Splits the slice on the first element that matches the specified predicate.
If any matching elements are present in the slice, returns the prefix
before the match and suffix after. The matching element itself is not
included. If no elements match, returns None
.
§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.split_once(|&x| x == 2), Some((
&[1][..],
&[3, 2, 4][..]
)));
assert_eq!(s.split_once(|&x| x == 0), None);
Sourcepub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
🔬This is a nightly-only experimental API. (slice_split_once
)
pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
slice_split_once
)Splits the slice on the last element that matches the specified predicate.
If any matching elements are present in the slice, returns the prefix
before the match and suffix after. The matching element itself is not
included. If no elements match, returns None
.
§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.rsplit_once(|&x| x == 2), Some((
&[1, 2, 3][..],
&[4][..]
)));
assert_eq!(s.rsplit_once(|&x| x == 0), None);
1.0.0 · Sourcepub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
pub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
Returns true
if the slice contains an element with the given value.
This operation is O(n).
Note that if you have a sorted slice, binary_search
may be faster.
§Examples
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));
If you do not have a &T
, but some other value that you can compare
with one (for example, String
implements PartialEq<str>
), you can
use iter().any
:
let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));
1.0.0 · Sourcepub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
pub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
Returns true
if needle
is a prefix of the slice or equal to the slice.
§Examples
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(v.starts_with(&v));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));
1.0.0 · Sourcepub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
pub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
Returns true
if needle
is a suffix of the slice or equal to the slice.
§Examples
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(v.ends_with(&v));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));
1.51.0 · Sourcepub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
Returns a subslice with the prefix removed.
If the slice starts with prefix
, returns the subslice after the prefix, wrapped in Some
.
If prefix
is empty, simply returns the original slice. If prefix
is equal to the
original slice, returns an empty slice.
If the slice does not start with prefix
, returns None
.
§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_prefix(&[50]), None);
assert_eq!(v.strip_prefix(&[10, 50]), None);
let prefix : &str = "he";
assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
Some(b"llo".as_ref()));
1.51.0 · Sourcepub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
Returns a subslice with the suffix removed.
If the slice ends with suffix
, returns the subslice before the suffix, wrapped in Some
.
If suffix
is empty, simply returns the original slice. If suffix
is equal to the
original slice, returns an empty slice.
If the slice does not end with suffix
, returns None
.
§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_suffix(&[50]), None);
assert_eq!(v.strip_suffix(&[50, 30]), None);
1.0.0 · Sourcepub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
pub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
Binary searches this slice for a given element. If the slice is not sorted, the returned result is unspecified and meaningless.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search_by
, binary_search_by_key
, and partition_point
.
§Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
assert_eq!(s.binary_search(&13), Ok(9));
assert_eq!(s.binary_search(&4), Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });
If you want to find that whole range of matching items, rather than
an arbitrary matching one, that can be done using partition_point
:
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let low = s.partition_point(|x| x < &1);
assert_eq!(low, 1);
let high = s.partition_point(|x| x <= &1);
assert_eq!(high, 5);
let r = s.binary_search(&1);
assert!((low..high).contains(&r.unwrap()));
assert!(s[..low].iter().all(|&x| x < 1));
assert!(s[low..high].iter().all(|&x| x == 1));
assert!(s[high..].iter().all(|&x| x > 1));
// For something not found, the "range" of equal items is empty
assert_eq!(s.partition_point(|x| x < &11), 9);
assert_eq!(s.partition_point(|x| x <= &11), 9);
assert_eq!(s.binary_search(&11), Err(9));
If you want to insert an item to a sorted vector, while maintaining
sort order, consider using partition_point
:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
// If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
// `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
// to shift less elements.
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
1.0.0 · Sourcepub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
Binary searches this slice with a comparator function.
The comparator function should return an order code that indicates
whether its argument is Less
, Equal
or Greater
the desired
target.
If the slice is not sorted or if the comparator function does not
implement an order consistent with the sort order of the underlying
slice, the returned result is unspecified and meaningless.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search
, binary_search_by_key
, and partition_point
.
§Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });
1.10.0 · Sourcepub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F,
) -> Result<usize, usize>
pub fn binary_search_by_key<'a, B, F>( &'a self, b: &B, f: F, ) -> Result<usize, usize>
Binary searches this slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If the slice is not sorted by the key, the returned result is
unspecified and meaningless.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search
, binary_search_by
, and partition_point
.
§Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
(1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
(1, 21), (2, 34), (4, 55)];
assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a, b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });
1.30.0 · Sourcepub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
Transmutes the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
§Safety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
§Examples
Basic usage:
unsafe {
let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}
Sourcepub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
🔬This is a nightly-only experimental API. (portable_simd
)
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
portable_simd
)Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
This is a safe wrapper around slice::align_to
, so inherits the same
guarantees as that method.
§Panics
This will panic if the size of the SIMD type is different from
LANES
times that of the scalar.
At the time of writing, the trait restrictions on Simd<T, LANES>
keeps
that from ever happening, as only power-of-two numbers of lanes are
supported. It’s possible that, in the future, those restrictions might
be lifted in a way that would make it possible to see panics from this
method for something like LANES == 3
.
§Examples
#![feature(portable_simd)]
use core::simd::prelude::*;
let short = &[1, 2, 3];
let (prefix, middle, suffix) = short.as_simd::<4>();
assert_eq!(middle, []); // Not enough elements for anything in the middle
// They might be split in any possible way between prefix and suffix
let it = prefix.iter().chain(suffix).copied();
assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
fn basic_simd_sum(x: &[f32]) -> f32 {
use std::ops::Add;
let (prefix, middle, suffix) = x.as_simd();
let sums = f32x4::from_array([
prefix.iter().copied().sum(),
0.0,
0.0,
suffix.iter().copied().sum(),
]);
let sums = middle.iter().copied().fold(sums, f32x4::add);
sums.reduce_sum()
}
let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
1.82.0 · Sourcepub fn is_sorted(&self) -> boolwhere
T: PartialOrd,
pub fn is_sorted(&self) -> boolwhere
T: PartialOrd,
Checks if the elements of this slice are sorted.
That is, for each element a
and its following element b
, a <= b
must hold. If the
slice yields exactly zero or one element, true
is returned.
Note that if Self::Item
is only PartialOrd
, but not Ord
, the above definition
implies that this function returns false
if any two consecutive items are not
comparable.
§Examples
let empty: [i32; 0] = [];
assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, f32::NAN].is_sorted());
1.82.0 · Sourcepub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
pub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
Checks if the elements of this slice are sorted using the given comparator function.
Instead of using PartialOrd::partial_cmp
, this function uses the given compare
function to determine whether two elements are to be considered in sorted order.
§Examples
assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
assert!([0].is_sorted_by(|a, b| true));
assert!([0].is_sorted_by(|a, b| false));
let empty: [i32; 0] = [];
assert!(empty.is_sorted_by(|a, b| false));
assert!(empty.is_sorted_by(|a, b| true));
1.82.0 · Sourcepub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
Checks if the elements of this slice are sorted using the given key extraction function.
Instead of comparing the slice’s elements directly, this function compares the keys of the
elements, as determined by f
. Apart from that, it’s equivalent to is_sorted
; see its
documentation for more information.
§Examples
assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
1.52.0 · Sourcepub fn partition_point<P>(&self, pred: P) -> usize
pub fn partition_point<P>(&self, pred: P) -> usize
Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).
The slice is assumed to be partitioned according to the given predicate.
This means that all elements for which the predicate returns true are at the start of the slice
and all elements for which the predicate returns false are at the end.
For example, [7, 15, 3, 5, 4, 12, 6]
is partitioned under the predicate x % 2 != 0
(all odd numbers are at the start, all even at the end).
If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
See also binary_search
, binary_search_by
, and binary_search_by_key
.
§Examples
let v = [1, 2, 3, 3, 5, 6, 7];
let i = v.partition_point(|&x| x < 5);
assert_eq!(i, 4);
assert!(v[..i].iter().all(|&x| x < 5));
assert!(v[i..].iter().all(|&x| !(x < 5)));
If all elements of the slice match the predicate, including if the slice is empty, then the length of the slice will be returned:
let a = [2, 4, 8];
assert_eq!(a.partition_point(|x| x < &100), a.len());
let a: [i32; 0] = [];
assert_eq!(a.partition_point(|x| x < &100), 0);
If you want to insert an item to a sorted vector, while maintaining sort order:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
Sourcepub fn element_offset(&self, element: &T) -> Option<usize>
🔬This is a nightly-only experimental API. (substr_range
)
pub fn element_offset(&self, element: &T) -> Option<usize>
substr_range
)Returns the index that an element reference points to.
Returns None
if element
does not point to the start of an element within the slice.
This method is useful for extending slice iterators like slice::split
.
Note that this uses pointer arithmetic and does not compare elements.
To find the index of an element via comparison, use
.iter().position()
instead.
§Panics
Panics if T
is zero-sized.
§Examples
Basic usage:
#![feature(substr_range)]
let nums: &[u32] = &[1, 7, 1, 1];
let num = &nums[2];
assert_eq!(num, &1);
assert_eq!(nums.element_offset(num), Some(2));
Returning None
with an unaligned element:
#![feature(substr_range)]
let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
let flat_arr: &[u32] = arr.as_flattened();
let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
assert_eq!(ok_elm, &[0, 1]);
assert_eq!(weird_elm, &[1, 2]);
assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
Sourcepub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range
)
pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>>
substr_range
)Returns the range of indices that a subslice points to.
Returns None
if subslice
does not point within the slice or if it is not aligned with the
elements in the slice.
This method does not compare elements. Instead, this method finds the location in the slice that
subslice
was obtained from. To find the index of a subslice via comparison, instead use
.windows()
.position()
.
This method is useful for extending slice iterators like slice::split
.
Note that this may return a false positive (either Some(0..0)
or Some(self.len()..self.len())
)
if subslice
has a length of zero and points to the beginning or end of another, separate, slice.
§Panics
Panics if T
is zero-sized.
§Examples
Basic usage:
#![feature(substr_range)]
let nums = &[0, 5, 10, 0, 0, 5];
let mut iter = nums
.split(|t| *t == 0)
.map(|n| nums.subslice_range(n).unwrap());
assert_eq!(iter.next(), Some(0..0));
assert_eq!(iter.next(), Some(1..3));
assert_eq!(iter.next(), Some(4..4));
assert_eq!(iter.next(), Some(5..6));
1.0.0 · Sourcepub fn to_vec(&self) -> Vec<T>where
T: Clone,
pub fn to_vec(&self) -> Vec<T>where
T: Clone,
Copies self
into a new Vec
.
§Examples
let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.
Sourcepub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
🔬This is a nightly-only experimental API. (allocator_api
)
pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
allocator_api
)Copies self
into a new Vec
with an allocator.
§Examples
#![feature(allocator_api)]
use std::alloc::System;
let s = [10, 40, 30];
let x = s.to_vec_in(System);
// Here, `s` and `x` can be modified independently.
1.0.0 · Sourcepub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output ⓘ
pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output ⓘ
Flattens a slice of T
into a single value Self::Output
.
§Examples
assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
1.3.0 · Sourcepub fn join<Separator>(
&self,
sep: Separator,
) -> <[T] as Join<Separator>>::Output ⓘ
pub fn join<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output ⓘ
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
§Examples
assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
1.0.0 · Sourcepub fn connect<Separator>(
&self,
sep: Separator,
) -> <[T] as Join<Separator>>::Output ⓘ
👎Deprecated since 1.3.0: renamed to join
pub fn connect<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output ⓘ
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
§Examples
assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
Trait Implementations§
Source§impl<T> AsMut<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> AsMut<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn as_mut(&mut self) -> &mut UniqueEntityEquivalentSlice<T>
fn as_mut(&mut self) -> &mut UniqueEntityEquivalentSlice<T>
Source§impl<T> AsMut<UniqueEntityEquivalentVec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> AsMut<UniqueEntityEquivalentVec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn as_mut(&mut self) -> &mut UniqueEntityEquivalentVec<T>
fn as_mut(&mut self) -> &mut UniqueEntityEquivalentVec<T>
Source§impl<T> AsRef<[T]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> AsRef<[T]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> AsRef<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> AsRef<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn as_ref(&self) -> &UniqueEntityEquivalentSlice<T>
fn as_ref(&self) -> &UniqueEntityEquivalentSlice<T>
Source§impl<T> AsRef<UniqueEntityEquivalentVec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> AsRef<UniqueEntityEquivalentVec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn as_ref(&self) -> &UniqueEntityEquivalentVec<T>
fn as_ref(&self) -> &UniqueEntityEquivalentVec<T>
Source§impl<T> AsRef<Vec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> AsRef<Vec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> Borrow<[T]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Borrow<[T]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> Borrow<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Borrow<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn borrow(&self) -> &UniqueEntityEquivalentSlice<T>
fn borrow(&self) -> &UniqueEntityEquivalentSlice<T>
Source§impl<T> Borrow<Vec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Borrow<Vec<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> BorrowMut<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> BorrowMut<UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn borrow_mut(&mut self) -> &mut UniqueEntityEquivalentSlice<T>
fn borrow_mut(&mut self) -> &mut UniqueEntityEquivalentSlice<T>
Source§impl<T> Clone for UniqueEntityEquivalentVec<T>where
T: Clone + EntityEquivalent,
impl<T> Clone for UniqueEntityEquivalentVec<T>where
T: Clone + EntityEquivalent,
Source§fn clone(&self) -> UniqueEntityEquivalentVec<T>
fn clone(&self) -> UniqueEntityEquivalentVec<T>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl<T> Debug for UniqueEntityEquivalentVec<T>where
T: Debug + EntityEquivalent,
impl<T> Debug for UniqueEntityEquivalentVec<T>where
T: Debug + EntityEquivalent,
Source§impl<T> Default for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Default for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn default() -> UniqueEntityEquivalentVec<T>
fn default() -> UniqueEntityEquivalentVec<T>
Source§impl<T> Deref for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Deref for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§type Target = UniqueEntityEquivalentSlice<T>
type Target = UniqueEntityEquivalentSlice<T>
Source§impl<T> DerefMut for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> DerefMut for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<'a, T> Extend<&'a T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Copy + 'a,
impl<'a, T> Extend<&'a T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Copy + 'a,
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
Use with caution, because this impl only uses Eq
to validate uniqueness,
resulting in O(n^2) complexity.
It can make sense for very low N, or if T
implements neither Ord
nor Hash
.
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T> Extend<T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Extend<T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
Use with caution, because this impl only uses Eq
to validate uniqueness,
resulting in O(n^2) complexity.
It can make sense for very low N, or if T
implements neither Ord
nor Hash
.
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T> From<&[T; 0]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T> From<&[T; 0]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(value: &[T; 0]) -> UniqueEntityEquivalentVec<T>
fn from(value: &[T; 0]) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<&[T; 1]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T> From<&[T; 1]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(value: &[T; 1]) -> UniqueEntityEquivalentVec<T>
fn from(value: &[T; 1]) -> UniqueEntityEquivalentVec<T>
Source§impl<T, const N: usize> From<&UniqueEntityEquivalentArray<T, N>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T, const N: usize> From<&UniqueEntityEquivalentArray<T, N>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(
value: &UniqueEntityEquivalentArray<T, N>,
) -> UniqueEntityEquivalentVec<T>
fn from( value: &UniqueEntityEquivalentArray<T, N>, ) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<&UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T> From<&UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(value: &UniqueEntityEquivalentSlice<T>) -> UniqueEntityEquivalentVec<T>
fn from(value: &UniqueEntityEquivalentSlice<T>) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<&mut [T; 0]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T> From<&mut [T; 0]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(value: &mut [T; 0]) -> UniqueEntityEquivalentVec<T>
fn from(value: &mut [T; 0]) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<&mut [T; 1]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T> From<&mut [T; 1]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(value: &mut [T; 1]) -> UniqueEntityEquivalentVec<T>
fn from(value: &mut [T; 1]) -> UniqueEntityEquivalentVec<T>
Source§impl<T, const N: usize> From<&mut UniqueEntityEquivalentArray<T, N>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T, const N: usize> From<&mut UniqueEntityEquivalentArray<T, N>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(
value: &mut UniqueEntityEquivalentArray<T, N>,
) -> UniqueEntityEquivalentVec<T>
fn from( value: &mut UniqueEntityEquivalentArray<T, N>, ) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<&mut UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
impl<T> From<&mut UniqueEntityEquivalentSlice<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + Clone,
Source§fn from(
value: &mut UniqueEntityEquivalentSlice<T>,
) -> UniqueEntityEquivalentVec<T>
fn from( value: &mut UniqueEntityEquivalentSlice<T>, ) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<[T; 0]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> From<[T; 0]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn from(value: [T; 0]) -> UniqueEntityEquivalentVec<T>
fn from(value: [T; 0]) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<[T; 1]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> From<[T; 1]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn from(value: [T; 1]) -> UniqueEntityEquivalentVec<T>
fn from(value: [T; 1]) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<BTreeSet<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> From<BTreeSet<T>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn from(value: BTreeSet<T>) -> UniqueEntityEquivalentVec<T>
fn from(value: BTreeSet<T>) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<Box<UniqueEntityEquivalentSlice<T>>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> From<Box<UniqueEntityEquivalentSlice<T>>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn from(
value: Box<UniqueEntityEquivalentSlice<T>>,
) -> UniqueEntityEquivalentVec<T>
fn from( value: Box<UniqueEntityEquivalentSlice<T>>, ) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<Cow<'_, UniqueEntityEquivalentSlice<T>>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
UniqueEntityEquivalentSlice<T>: ToOwned<Owned = UniqueEntityEquivalentVec<T>>,
impl<T> From<Cow<'_, UniqueEntityEquivalentSlice<T>>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
UniqueEntityEquivalentSlice<T>: ToOwned<Owned = UniqueEntityEquivalentVec<T>>,
Source§fn from(
value: Cow<'_, UniqueEntityEquivalentSlice<T>>,
) -> UniqueEntityEquivalentVec<T>
fn from( value: Cow<'_, UniqueEntityEquivalentSlice<T>>, ) -> UniqueEntityEquivalentVec<T>
Source§impl<T, const N: usize> From<UniqueEntityEquivalentArray<T, N>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T, const N: usize> From<UniqueEntityEquivalentArray<T, N>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn from(
value: UniqueEntityEquivalentArray<T, N>,
) -> UniqueEntityEquivalentVec<T>
fn from( value: UniqueEntityEquivalentArray<T, N>, ) -> UniqueEntityEquivalentVec<T>
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for Arc<[T]>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for Arc<[T]>where
T: EntityEquivalent,
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for Arc<UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for Arc<UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent,
Source§fn from(
value: UniqueEntityEquivalentVec<T>,
) -> Arc<UniqueEntityEquivalentSlice<T>>
fn from( value: UniqueEntityEquivalentVec<T>, ) -> Arc<UniqueEntityEquivalentSlice<T>>
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for BinaryHeap<T>where
T: EntityEquivalent + Ord,
impl<T> From<UniqueEntityEquivalentVec<T>> for BinaryHeap<T>where
T: EntityEquivalent + Ord,
Source§fn from(value: UniqueEntityEquivalentVec<T>) -> BinaryHeap<T>
fn from(value: UniqueEntityEquivalentVec<T>) -> BinaryHeap<T>
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for Box<[T]>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for Box<[T]>where
T: EntityEquivalent,
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for Box<UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for Box<UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent,
Source§fn from(
value: UniqueEntityEquivalentVec<T>,
) -> Box<UniqueEntityEquivalentSlice<T>>
fn from( value: UniqueEntityEquivalentVec<T>, ) -> Box<UniqueEntityEquivalentSlice<T>>
Source§impl<'a, T> From<UniqueEntityEquivalentVec<T>> for Cow<'a, [T]>where
T: EntityEquivalent + Clone,
impl<'a, T> From<UniqueEntityEquivalentVec<T>> for Cow<'a, [T]>where
T: EntityEquivalent + Clone,
Source§impl<'a, T> From<UniqueEntityEquivalentVec<T>> for Cow<'a, UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent + Clone,
impl<'a, T> From<UniqueEntityEquivalentVec<T>> for Cow<'a, UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent + Clone,
Source§fn from(
value: UniqueEntityEquivalentVec<T>,
) -> Cow<'a, UniqueEntityEquivalentSlice<T>>
fn from( value: UniqueEntityEquivalentVec<T>, ) -> Cow<'a, UniqueEntityEquivalentSlice<T>>
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for Rc<[T]>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for Rc<[T]>where
T: EntityEquivalent,
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for Rc<UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for Rc<UniqueEntityEquivalentSlice<T>>where
T: EntityEquivalent,
Source§fn from(
value: UniqueEntityEquivalentVec<T>,
) -> Rc<UniqueEntityEquivalentSlice<T>>
fn from( value: UniqueEntityEquivalentVec<T>, ) -> Rc<UniqueEntityEquivalentSlice<T>>
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for Vec<T>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for Vec<T>where
T: EntityEquivalent,
Source§fn from(value: UniqueEntityEquivalentVec<T>) -> Vec<T>
fn from(value: UniqueEntityEquivalentVec<T>) -> Vec<T>
Source§impl<T> From<UniqueEntityEquivalentVec<T>> for VecDeque<T>where
T: EntityEquivalent,
impl<T> From<UniqueEntityEquivalentVec<T>> for VecDeque<T>where
T: EntityEquivalent,
Source§fn from(value: UniqueEntityEquivalentVec<T>) -> VecDeque<T>
fn from(value: UniqueEntityEquivalentVec<T>) -> VecDeque<T>
Source§impl<T> FromEntitySetIterator<T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> FromEntitySetIterator<T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn from_entity_set_iter<I>(iter: I) -> UniqueEntityEquivalentVec<T>where
I: EntitySet<Item = T>,
fn from_entity_set_iter<I>(iter: I) -> UniqueEntityEquivalentVec<T>where
I: EntitySet<Item = T>,
EntitySetIterator
.Source§impl<T> FromIterator<T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> FromIterator<T> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn from_iter<I>(iter: I) -> UniqueEntityEquivalentVec<T>where
I: IntoIterator<Item = T>,
fn from_iter<I>(iter: I) -> UniqueEntityEquivalentVec<T>where
I: IntoIterator<Item = T>,
This impl only uses Eq
to validate uniqueness, resulting in O(n^2) complexity.
It can make sense for very low N, or if T
implements neither Ord
nor Hash
.
When possible, use FromEntitySetIterator::from_entity_iter
instead.
Source§impl<T> Hash for UniqueEntityEquivalentVec<T>where
T: Hash + EntityEquivalent,
impl<T> Hash for UniqueEntityEquivalentVec<T>where
T: Hash + EntityEquivalent,
Source§impl<T> Index<(Bound<usize>, Bound<usize>)> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<(Bound<usize>, Bound<usize>)> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> Index<Range<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<Range<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> Index<RangeFrom<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<RangeFrom<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> Index<RangeFull> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<RangeFull> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> Index<RangeInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<RangeInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§type Output = UniqueEntityEquivalentSlice<T>
type Output = UniqueEntityEquivalentSlice<T>
Source§fn index(
&self,
key: RangeInclusive<usize>,
) -> &<UniqueEntityEquivalentVec<T> as Index<RangeInclusive<usize>>>::Output
fn index( &self, key: RangeInclusive<usize>, ) -> &<UniqueEntityEquivalentVec<T> as Index<RangeInclusive<usize>>>::Output
container[index]
) operation. Read moreSource§impl<T> Index<RangeTo<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<RangeTo<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> Index<RangeToInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<RangeToInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§type Output = UniqueEntityEquivalentSlice<T>
type Output = UniqueEntityEquivalentSlice<T>
Source§fn index(
&self,
key: RangeToInclusive<usize>,
) -> &<UniqueEntityEquivalentVec<T> as Index<RangeToInclusive<usize>>>::Output
fn index( &self, key: RangeToInclusive<usize>, ) -> &<UniqueEntityEquivalentVec<T> as Index<RangeToInclusive<usize>>>::Output
container[index]
) operation. Read moreSource§impl<T> Index<usize> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> Index<usize> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> IndexMut<(Bound<usize>, Bound<usize>)> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IndexMut<(Bound<usize>, Bound<usize>)> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> IndexMut<Range<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IndexMut<Range<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> IndexMut<RangeFrom<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IndexMut<RangeFrom<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> IndexMut<RangeFull> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IndexMut<RangeFull> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> IndexMut<RangeInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IndexMut<RangeInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn index_mut(
&mut self,
key: RangeInclusive<usize>,
) -> &mut <UniqueEntityEquivalentVec<T> as Index<RangeInclusive<usize>>>::Output
fn index_mut( &mut self, key: RangeInclusive<usize>, ) -> &mut <UniqueEntityEquivalentVec<T> as Index<RangeInclusive<usize>>>::Output
container[index]
) operation. Read moreSource§impl<T> IndexMut<RangeTo<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IndexMut<RangeTo<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§impl<T> IndexMut<RangeToInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IndexMut<RangeToInclusive<usize>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§fn index_mut(
&mut self,
key: RangeToInclusive<usize>,
) -> &mut <UniqueEntityEquivalentVec<T> as Index<RangeToInclusive<usize>>>::Output
fn index_mut( &mut self, key: RangeToInclusive<usize>, ) -> &mut <UniqueEntityEquivalentVec<T> as Index<RangeToInclusive<usize>>>::Output
container[index]
) operation. Read moreSource§impl<'a, T> IntoIterator for &'a UniqueEntityEquivalentVec<T>
impl<'a, T> IntoIterator for &'a UniqueEntityEquivalentVec<T>
Source§type IntoIter = UniqueEntityIter<Iter<'a, T>>
type IntoIter = UniqueEntityIter<Iter<'a, T>>
Source§fn into_iter(
self,
) -> <&'a UniqueEntityEquivalentVec<T> as IntoIterator>::IntoIter
fn into_iter( self, ) -> <&'a UniqueEntityEquivalentVec<T> as IntoIterator>::IntoIter
Source§impl<T> IntoIterator for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
impl<T> IntoIterator for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Source§type IntoIter = UniqueEntityIter<IntoIter<T>>
type IntoIter = UniqueEntityIter<IntoIter<T>>
Source§fn into_iter(self) -> <UniqueEntityEquivalentVec<T> as IntoIterator>::IntoIter
fn into_iter(self) -> <UniqueEntityEquivalentVec<T> as IntoIterator>::IntoIter
Source§impl<T> Ord for UniqueEntityEquivalentVec<T>where
T: Ord + EntityEquivalent,
impl<T> Ord for UniqueEntityEquivalentVec<T>where
T: Ord + EntityEquivalent,
Source§fn cmp(&self, other: &UniqueEntityEquivalentVec<T>) -> Ordering
fn cmp(&self, other: &UniqueEntityEquivalentVec<T>) -> Ordering
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Source§impl<T, U> PartialEq<&[U]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
impl<T, U> PartialEq<&[U]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
Source§impl<T, U, const N: usize> PartialEq<&[U; N]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
impl<T, U, const N: usize> PartialEq<&[U; N]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
Source§impl<T, U, const N: usize> PartialEq<&UniqueEntityEquivalentArray<U, N>> for UniqueEntityEquivalentVec<T>
impl<T, U, const N: usize> PartialEq<&UniqueEntityEquivalentArray<U, N>> for UniqueEntityEquivalentVec<T>
Source§fn eq(&self, other: &&UniqueEntityEquivalentArray<U, N>) -> bool
fn eq(&self, other: &&UniqueEntityEquivalentArray<U, N>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<&UniqueEntityEquivalentSlice<U>> for UniqueEntityEquivalentVec<T>
impl<T, U> PartialEq<&UniqueEntityEquivalentSlice<U>> for UniqueEntityEquivalentVec<T>
Source§fn eq(&self, other: &&UniqueEntityEquivalentSlice<U>) -> bool
fn eq(&self, other: &&UniqueEntityEquivalentSlice<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<&mut [U]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
impl<T, U> PartialEq<&mut [U]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
Source§impl<T, U, const N: usize> PartialEq<&mut [U; N]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
impl<T, U, const N: usize> PartialEq<&mut [U; N]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
Source§impl<T, U, const N: usize> PartialEq<&mut UniqueEntityEquivalentArray<U, N>> for UniqueEntityEquivalentVec<T>
impl<T, U, const N: usize> PartialEq<&mut UniqueEntityEquivalentArray<U, N>> for UniqueEntityEquivalentVec<T>
Source§fn eq(&self, other: &&mut UniqueEntityEquivalentArray<U, N>) -> bool
fn eq(&self, other: &&mut UniqueEntityEquivalentArray<U, N>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<&mut UniqueEntityEquivalentSlice<U>> for UniqueEntityEquivalentVec<T>
impl<T, U> PartialEq<&mut UniqueEntityEquivalentSlice<U>> for UniqueEntityEquivalentVec<T>
Source§fn eq(&self, other: &&mut UniqueEntityEquivalentSlice<U>) -> bool
fn eq(&self, other: &&mut UniqueEntityEquivalentSlice<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<[U]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
impl<T, U> PartialEq<[U]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
Source§impl<T, U, const N: usize> PartialEq<[U; N]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
impl<T, U, const N: usize> PartialEq<[U; N]> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
Source§impl<T, U, const N: usize> PartialEq<UniqueEntityEquivalentArray<U, N>> for UniqueEntityEquivalentVec<T>
impl<T, U, const N: usize> PartialEq<UniqueEntityEquivalentArray<U, N>> for UniqueEntityEquivalentVec<T>
Source§fn eq(&self, other: &UniqueEntityEquivalentArray<U, N>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentArray<U, N>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentSlice<U>> for UniqueEntityEquivalentVec<T>
impl<T, U> PartialEq<UniqueEntityEquivalentSlice<U>> for UniqueEntityEquivalentVec<T>
Source§fn eq(&self, other: &UniqueEntityEquivalentSlice<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentSlice<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &[T]where
T: PartialEq<U>,
U: EntityEquivalent,
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &[T]where
T: PartialEq<U>,
U: EntityEquivalent,
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &UniqueEntityEquivalentSlice<T>
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &UniqueEntityEquivalentSlice<T>
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &mut [T]where
T: PartialEq<U>,
U: EntityEquivalent,
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &mut [T]where
T: PartialEq<U>,
U: EntityEquivalent,
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &mut UniqueEntityEquivalentSlice<T>
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for &mut UniqueEntityEquivalentSlice<T>
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for [T]
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for [T]
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for Cow<'_, [T]>
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for Cow<'_, [T]>
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for Cow<'_, UniqueEntityEquivalentSlice<T>>
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for Cow<'_, UniqueEntityEquivalentSlice<T>>
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for UniqueEntityEquivalentSlice<T>
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for UniqueEntityEquivalentSlice<T>
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for Vec<T>where
T: PartialEq<U>,
U: EntityEquivalent,
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for Vec<T>where
T: PartialEq<U>,
U: EntityEquivalent,
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for VecDeque<T>where
T: PartialEq<U>,
U: EntityEquivalent,
impl<T, U> PartialEq<UniqueEntityEquivalentVec<U>> for VecDeque<T>where
T: PartialEq<U>,
U: EntityEquivalent,
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<U>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T, U> PartialEq<Vec<U>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
impl<T, U> PartialEq<Vec<U>> for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent + PartialEq<U>,
Source§impl<T> PartialEq for UniqueEntityEquivalentVec<T>where
T: PartialEq + EntityEquivalent,
impl<T> PartialEq for UniqueEntityEquivalentVec<T>where
T: PartialEq + EntityEquivalent,
Source§fn eq(&self, other: &UniqueEntityEquivalentVec<T>) -> bool
fn eq(&self, other: &UniqueEntityEquivalentVec<T>) -> bool
self
and other
values to be equal, and is used by ==
.Source§impl<T> PartialOrd for UniqueEntityEquivalentVec<T>where
T: PartialOrd + EntityEquivalent,
impl<T> PartialOrd for UniqueEntityEquivalentVec<T>where
T: PartialOrd + EntityEquivalent,
Source§impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for [T; N]where
T: EntityEquivalent,
impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for [T; N]where
T: EntityEquivalent,
Source§type Error = UniqueEntityEquivalentVec<T>
type Error = UniqueEntityEquivalentVec<T>
Source§fn try_from(
value: UniqueEntityEquivalentVec<T>,
) -> Result<[T; N], <[T; N] as TryFrom<UniqueEntityEquivalentVec<T>>>::Error>
fn try_from( value: UniqueEntityEquivalentVec<T>, ) -> Result<[T; N], <[T; N] as TryFrom<UniqueEntityEquivalentVec<T>>>::Error>
Source§impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for Box<[T; N]>where
T: EntityEquivalent,
impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for Box<[T; N]>where
T: EntityEquivalent,
Source§impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for Box<UniqueEntityEquivalentArray<T, N>>where
T: EntityEquivalent,
impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for Box<UniqueEntityEquivalentArray<T, N>>where
T: EntityEquivalent,
Source§type Error = UniqueEntityEquivalentVec<T>
type Error = UniqueEntityEquivalentVec<T>
Source§fn try_from(
value: UniqueEntityEquivalentVec<T>,
) -> Result<Box<UniqueEntityEquivalentArray<T, N>>, <Box<UniqueEntityEquivalentArray<T, N>> as TryFrom<UniqueEntityEquivalentVec<T>>>::Error>
fn try_from( value: UniqueEntityEquivalentVec<T>, ) -> Result<Box<UniqueEntityEquivalentArray<T, N>>, <Box<UniqueEntityEquivalentArray<T, N>> as TryFrom<UniqueEntityEquivalentVec<T>>>::Error>
Source§impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for UniqueEntityEquivalentArray<T, N>where
T: EntityEquivalent,
impl<T, const N: usize> TryFrom<UniqueEntityEquivalentVec<T>> for UniqueEntityEquivalentArray<T, N>where
T: EntityEquivalent,
Source§type Error = UniqueEntityEquivalentVec<T>
type Error = UniqueEntityEquivalentVec<T>
Source§fn try_from(
value: UniqueEntityEquivalentVec<T>,
) -> Result<UniqueEntityEquivalentArray<T, N>, <UniqueEntityEquivalentArray<T, N> as TryFrom<UniqueEntityEquivalentVec<T>>>::Error>
fn try_from( value: UniqueEntityEquivalentVec<T>, ) -> Result<UniqueEntityEquivalentArray<T, N>, <UniqueEntityEquivalentArray<T, N> as TryFrom<UniqueEntityEquivalentVec<T>>>::Error>
impl<T> Eq for UniqueEntityEquivalentVec<T>where
T: Eq + EntityEquivalent,
impl<T> StructuralPartialEq for UniqueEntityEquivalentVec<T>where
T: EntityEquivalent,
Auto Trait Implementations§
impl<T> Freeze for UniqueEntityEquivalentVec<T>
impl<T> RefUnwindSafe for UniqueEntityEquivalentVec<T>where
T: RefUnwindSafe,
impl<T> Send for UniqueEntityEquivalentVec<T>where
T: Send,
impl<T> Sync for UniqueEntityEquivalentVec<T>where
T: Sync,
impl<T> Unpin for UniqueEntityEquivalentVec<T>where
T: Unpin,
impl<T> UnwindSafe for UniqueEntityEquivalentVec<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
, which can then be
downcast
into Box<dyn ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
, which can then be further
downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.Source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
Source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates Self
using default()
.
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<S, T> ParallelSlice<T> for S
impl<S, T> ParallelSlice<T> for S
Source§fn par_chunk_map<F, R>(
&self,
task_pool: &TaskPool,
chunk_size: usize,
f: F,
) -> Vec<R>
fn par_chunk_map<F, R>( &self, task_pool: &TaskPool, chunk_size: usize, f: F, ) -> Vec<R>
chunks_size
or less and maps the chunks
in parallel across the provided task_pool
. One task is spawned in the task pool
for every chunk. Read more