pub struct LazyLock<T, F = fn() -> T> { /* private fields */ }
Expand description
A value which is initialized on the first access.
This type is a thread-safe LazyCell
, and can be used in statics.
Since initialization may be called from multiple threads, any
dereferencing call will block the calling thread if another
initialization routine is currently running.
§Examples
Initialize static variables with LazyLock
.
use std::sync::LazyLock;
// Note: static items do not call [`Drop`] on program termination, so this won't be deallocated.
// this is fine, as the OS can deallocate the terminated program faster than we can free memory
// but tools like valgrind might report "memory leaks" as it isn't obvious this is intentional.
static DEEP_THOUGHT: LazyLock<String> = LazyLock::new(|| {
// M3 Ultra takes about 16 million years in --release config
another_crate::great_question()
});
// The `String` is built, stored in the `LazyLock`, and returned as `&String`.
let _ = &*DEEP_THOUGHT;
Initialize fields with LazyLock
.
use std::sync::LazyLock;
#[derive(Debug)]
struct UseCellLock {
number: LazyLock<u32>,
}
fn main() {
let lock: LazyLock<u32> = LazyLock::new(|| 0u32);
let data = UseCellLock { number: lock };
println!("{}", *data.number);
}
Implementations§
Source§impl<T, F> LazyLock<T, F>where
F: FnOnce() -> T,
impl<T, F> LazyLock<T, F>where
F: FnOnce() -> T,
1.80.0 (const: 1.80.0) · Sourcepub const fn new(f: F) -> LazyLock<T, F>
pub const fn new(f: F) -> LazyLock<T, F>
Creates a new lazy value with the given initializing function.
§Examples
use std::sync::LazyLock;
let hello = "Hello, World!".to_string();
let lazy = LazyLock::new(|| hello.to_uppercase());
assert_eq!(&*lazy, "HELLO, WORLD!");
Sourcepub fn into_inner(this: LazyLock<T, F>) -> Result<T, F>
🔬This is a nightly-only experimental API. (lazy_cell_into_inner
)
pub fn into_inner(this: LazyLock<T, F>) -> Result<T, F>
lazy_cell_into_inner
)Consumes this LazyLock
returning the stored value.
Returns Ok(value)
if Lazy
is initialized and Err(f)
otherwise.
§Examples
#![feature(lazy_cell_into_inner)]
use std::sync::LazyLock;
let hello = "Hello, World!".to_string();
let lazy = LazyLock::new(|| hello.to_uppercase());
assert_eq!(&*lazy, "HELLO, WORLD!");
assert_eq!(LazyLock::into_inner(lazy).ok(), Some("HELLO, WORLD!".to_string()));
Sourcepub fn force_mut(this: &mut LazyLock<T, F>) -> &mut T
🔬This is a nightly-only experimental API. (lazy_get
)
pub fn force_mut(this: &mut LazyLock<T, F>) -> &mut T
lazy_get
)Forces the evaluation of this lazy value and returns a mutable reference to the result.
§Examples
#![feature(lazy_get)]
use std::sync::LazyLock;
let mut lazy = LazyLock::new(|| 92);
let p = LazyLock::force_mut(&mut lazy);
assert_eq!(*p, 92);
*p = 44;
assert_eq!(*lazy, 44);
1.80.0 · Sourcepub fn force(this: &LazyLock<T, F>) -> &T
pub fn force(this: &LazyLock<T, F>) -> &T
Forces the evaluation of this lazy value and returns a reference to
result. This is equivalent to the Deref
impl, but is explicit.
This method will block the calling thread if another initialization routine is currently running.
§Examples
use std::sync::LazyLock;
let lazy = LazyLock::new(|| 92);
assert_eq!(LazyLock::force(&lazy), &92);
assert_eq!(&*lazy, &92);
Source§impl<T, F> LazyLock<T, F>
impl<T, F> LazyLock<T, F>
Sourcepub fn get_mut(this: &mut LazyLock<T, F>) -> Option<&mut T>
🔬This is a nightly-only experimental API. (lazy_get
)
pub fn get_mut(this: &mut LazyLock<T, F>) -> Option<&mut T>
lazy_get
)Returns a mutable reference to the value if initialized, or None
if not.
§Examples
#![feature(lazy_get)]
use std::sync::LazyLock;
let mut lazy = LazyLock::new(|| 92);
assert_eq!(LazyLock::get_mut(&mut lazy), None);
let _ = LazyLock::force(&lazy);
*LazyLock::get_mut(&mut lazy).unwrap() = 44;
assert_eq!(*lazy, 44);
Sourcepub fn get(this: &LazyLock<T, F>) -> Option<&T>
🔬This is a nightly-only experimental API. (lazy_get
)
pub fn get(this: &LazyLock<T, F>) -> Option<&T>
lazy_get
)Returns a reference to the value if initialized, or None
if not.
§Examples
#![feature(lazy_get)]
use std::sync::LazyLock;
let lazy = LazyLock::new(|| 92);
assert_eq!(LazyLock::get(&lazy), None);
let _ = LazyLock::force(&lazy);
assert_eq!(LazyLock::get(&lazy), Some(&92));
Trait Implementations§
impl<T, F> RefUnwindSafe for LazyLock<T, F>
impl<T, F> Sync for LazyLock<T, F>
impl<T, F> UnwindSafe for LazyLock<T, F>where
T: UnwindSafe,
F: UnwindSafe,
Auto Trait Implementations§
impl<T, F = fn() -> T> !Freeze for LazyLock<T, F>
impl<T, F> Send for LazyLock<T, F>
impl<T, F> Unpin for LazyLock<T, F>
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T, C, D> Curve<T> for D
impl<T, C, D> Curve<T> for D
Source§fn sample_unchecked(&self, t: f32) -> T
fn sample_unchecked(&self, t: f32) -> T
t
, extracting the associated value.
This is the unchecked version of sampling, which should only be used if the sample time t
is already known to lie within the curve’s domain. Read moreSource§fn sample(&self, t: f32) -> Option<T>
fn sample(&self, t: f32) -> Option<T>
t
, returning None
if the point is
outside of the curve’s domain.Source§fn sample_clamped(&self, t: f32) -> T
fn sample_clamped(&self, t: f32) -> T
t
, clamping t
to lie inside the
domain of the curve.Source§impl<C, T> CurveExt<T> for Cwhere
C: Curve<T>,
impl<C, T> CurveExt<T> for Cwhere
C: Curve<T>,
Source§fn sample_iter(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = Option<T>>
fn sample_iter( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = Option<T>>
n >= 0
points on this curve at the parameter values t_n
,
returning None
if the point is outside of the curve’s domain. Read moreSource§fn sample_iter_unchecked(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>
fn sample_iter_unchecked( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>
n >= 0
points on this curve at the parameter values t_n
,
extracting the associated values. This is the unchecked version of sampling, which should
only be used if the sample times t_n
are already known to lie within the curve’s domain. Read moreSource§fn sample_iter_clamped(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>
fn sample_iter_clamped( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>
n >= 0
points on this curve at the parameter values t_n
,
clamping t_n
to lie inside the domain of the curve. Read moreSource§fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>where
F: Fn(T) -> S,
fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>where
F: Fn(T) -> S,
f
; i.e., if the
sample at time t
for this curve is x
, the value at time t
on the new curve will be
f(x)
.Source§fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
Curve
whose parameter space is related to the parameter space of this curve
by f
. For each time t
, the sample from the new curve at time t
is the sample from
this curve at time f(t)
. The given domain
will be the domain of the new curve. The
function f
is expected to take domain
into self.domain()
. Read moreSource§fn reparametrize_linear(
self,
domain: Interval,
) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>
fn reparametrize_linear( self, domain: Interval, ) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>
Source§fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
Source§fn graph(self) -> GraphCurve<T, Self>
fn graph(self) -> GraphCurve<T, Self>
Source§fn zip<S, C>(
self,
other: C,
) -> Result<ZipCurve<T, S, Self, C>, InvalidIntervalError>where
C: Curve<S>,
fn zip<S, C>(
self,
other: C,
) -> Result<ZipCurve<T, S, Self, C>, InvalidIntervalError>where
C: Curve<S>,
Source§fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>where
C: Curve<T>,
fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>where
C: Curve<T>,
Source§fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>
fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>
Source§fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>
fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>
Source§fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>
fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>
Source§fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>
fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>
Source§fn chain_continue<C>(
self,
other: C,
) -> Result<ContinuationCurve<T, Self, C>, ChainError>where
T: VectorSpace,
C: Curve<T>,
fn chain_continue<C>(
self,
other: C,
) -> Result<ContinuationCurve<T, Self, C>, ChainError>where
T: VectorSpace,
C: Curve<T>,
Source§fn samples(
&self,
samples: usize,
) -> Result<impl Iterator<Item = T>, ResamplingError>
fn samples( &self, samples: usize, ) -> Result<impl Iterator<Item = T>, ResamplingError>
Source§impl<C, T> CurveResampleExt<T> for C
impl<C, T> CurveResampleExt<T> for C
Source§fn resample<I>(
&self,
segments: usize,
interpolation: I,
) -> Result<SampleCurve<T, I>, ResamplingError>
fn resample<I>( &self, segments: usize, interpolation: I, ) -> Result<SampleCurve<T, I>, ResamplingError>
Curve
to produce a new one that is defined by interpolation over equally
spaced sample values, using the provided interpolation
to interpolate between adjacent samples.
The curve is interpolated on segments
segments between samples. For example, if segments
is 1,
only the start and end points of the curve are used as samples; if segments
is 2, a sample at
the midpoint is taken as well, and so on. Read moreSource§fn resample_auto(
&self,
segments: usize,
) -> Result<SampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
fn resample_auto(
&self,
segments: usize,
) -> Result<SampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
Curve
to produce a new one that is defined by interpolation over equally
spaced sample values, using automatic interpolation to interpolate between adjacent samples.
The curve is interpolated on segments
segments between samples. For example, if segments
is 1,
only the start and end points of the curve are used as samples; if segments
is 2, a sample at
the midpoint is taken as well, and so on. Read moreSource§fn resample_uneven<I>(
&self,
sample_times: impl IntoIterator<Item = f32>,
interpolation: I,
) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
fn resample_uneven<I>( &self, sample_times: impl IntoIterator<Item = f32>, interpolation: I, ) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
Source§fn resample_uneven_auto(
&self,
sample_times: impl IntoIterator<Item = f32>,
) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
fn resample_uneven_auto(
&self,
sample_times: impl IntoIterator<Item = f32>,
) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
Curve
to produce a new one that is defined by automatic interpolation over
samples taken at the given set of times. The given sample_times
are expected to contain at least
two valid times within the curve’s domain interval. Read moreSource§impl<T, C> CurveWithDerivative<T> for Cwhere
T: HasTangent,
C: SampleDerivative<T>,
impl<T, C> CurveWithDerivative<T> for Cwhere
T: HasTangent,
C: SampleDerivative<T>,
Source§fn with_derivative(self) -> SampleDerivativeWrapper<C>
fn with_derivative(self) -> SampleDerivativeWrapper<C>
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
, which can then be
downcast
into Box<dyn ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
, which can then be further
downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
Source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates Self
using default()
.
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T, C, D> SampleDerivative<T> for D
impl<T, C, D> SampleDerivative<T> for D
Source§fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<T>
fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<T>
t
, extracting the associated value
in addition to its derivative. This is the unchecked version of sampling, which
should only be used if the sample time t
is already known to lie within the
curve’s domain. Read moreSource§fn sample_with_derivative(&self, t: f32) -> Option<WithDerivative<T>>
fn sample_with_derivative(&self, t: f32) -> Option<WithDerivative<T>>
t
, returning
None
if the point is outside of the curve’s domain.Source§fn sample_with_derivative_clamped(&self, t: f32) -> WithDerivative<T>
fn sample_with_derivative_clamped(&self, t: f32) -> WithDerivative<T>
t
, clamping t
to lie inside the domain of the curve.