nalgebra::base

Type Alias OMatrix

Source
pub type OMatrix<T, R, C> = Matrix<T, R, C, Owned<T, R, C>>;
Expand description

An owned matrix column-major matrix with R rows and C columns.

Because this is an alias, not all its methods are listed here. See the Matrix type too.

Aliased Type§

struct OMatrix<T, R, C> {
    pub data: <DefaultAllocator as Allocator<R, C>>::Buffer<T>,
    /* private fields */
}

Fields§

§data: <DefaultAllocator as Allocator<R, C>>::Buffer<T>

The data storage that contains all the matrix components. Disappointed?

Well, if you came here to see how you can access the matrix components, you may be in luck: you can access the individual components of all vectors with compile-time dimensions <= 6 using field notation like this: vec.x, vec.y, vec.z, vec.w, vec.a, vec.b. Reference and assignation work too:

let mut vec = Vector3::new(1.0, 2.0, 3.0);
vec.x = 10.0;
vec.y += 30.0;
assert_eq!(vec.x, 10.0);
assert_eq!(vec.y + 100.0, 132.0);

Similarly, for matrices with compile-time dimensions <= 6, you can use field notation like this: mat.m11, mat.m42, etc. The first digit identifies the row to address and the second digit identifies the column to address. So mat.m13 identifies the component at the first row and third column (note that the count of rows and columns start at 1 instead of 0 here. This is so we match the mathematical notation).

For all matrices and vectors, independently from their size, individual components can be accessed and modified using indexing: vec[20], mat[(20, 19)]. Here the indexing starts at 0 as you would expect.

Implementations§

Source§

impl<T, D: DimName> OMatrix<T, D, D>
where T: Scalar + Zero + One, DefaultAllocator: Allocator<D, D>,

§Translation and scaling in any dimension

Source

pub fn new_scaling(scaling: T) -> Self

Creates a new homogeneous matrix that applies the same scaling factor on each dimension.

Source

pub fn new_nonuniform_scaling<SB>( scaling: &Vector<T, DimNameDiff<D, U1>, SB>, ) -> Self
where D: DimNameSub<U1>, SB: Storage<T, DimNameDiff<D, U1>>,

Creates a new homogeneous matrix that applies a distinct scaling factor for each dimension.

Source

pub fn new_translation<SB>( translation: &Vector<T, DimNameDiff<D, U1>, SB>, ) -> Self
where D: DimNameSub<U1>, SB: Storage<T, DimNameDiff<D, U1>>,

Creates a new homogeneous matrix that applies a pure translation.

Source§

impl<T: Scalar, R: Dim, C: Dim> OMatrix<T, R, C>

§Generic constructors

This set of matrix and vector construction functions are all generic with-regard to the matrix dimensions. They all expect to be given the dimension as inputs.

These functions should only be used when working on dimension-generic code.

Source

pub fn from_element_generic(nrows: R, ncols: C, elem: T) -> Self

Creates a matrix with all its elements set to elem.

Source

pub fn repeat_generic(nrows: R, ncols: C, elem: T) -> Self

Creates a matrix with all its elements set to elem.

Same as from_element_generic.

Source

pub fn zeros_generic(nrows: R, ncols: C) -> Self
where T: Zero,

Creates a matrix with all its elements set to 0.

Source

pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix with all its elements filled by an iterator.

Source

pub fn from_row_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix with all its elements filled by an row-major order iterator.

Source

pub fn from_row_slice_generic(nrows: R, ncols: C, slice: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice in row-major order.

The order of elements in the slice must follow the usual mathematic writing, i.e., row-by-row.

Source

pub fn from_column_slice_generic(nrows: R, ncols: C, slice: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice. The components must have the same layout as the matrix data storage (i.e. column-major).

Source

pub fn from_fn_generic<F>(nrows: R, ncols: C, f: F) -> Self
where F: FnMut(usize, usize) -> T,

Creates a matrix filled with the results of a function applied to each of its component coordinates.

Source

pub fn identity_generic(nrows: R, ncols: C) -> Self
where T: Zero + One,

Creates a new identity matrix.

If the matrix is not square, the largest square submatrix starting at index (0, 0) is set to the identity matrix. All other entries are set to zero.

Source

pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: T) -> Self
where T: Zero + One,

Creates a new matrix with its diagonal filled with copies of elt.

If the matrix is not square, the largest square submatrix starting at index (0, 0) is set to the identity matrix. All other entries are set to zero.

Source

pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[T]) -> Self
where T: Zero,

Creates a new matrix that may be rectangular. The first elts.len() diagonal elements are filled with the content of elts. Others are set to 0.

Panics if elts.len() is larger than the minimum among nrows and ncols.

Source

pub fn from_rows<SB>(rows: &[Matrix<T, Const<1>, C, SB>]) -> Self
where SB: RawStorage<T, Const<1>, C>,

Builds a new matrix from its rows.

Panics if not enough rows are provided (for statically-sized matrices), or if all rows do not have the same dimensions.

§Example

let m = Matrix3::from_rows(&[ RowVector3::new(1.0, 2.0, 3.0),  RowVector3::new(4.0, 5.0, 6.0),  RowVector3::new(7.0, 8.0, 9.0) ]);

assert!(m.m11 == 1.0 && m.m12 == 2.0 && m.m13 == 3.0 &&
        m.m21 == 4.0 && m.m22 == 5.0 && m.m23 == 6.0 &&
        m.m31 == 7.0 && m.m32 == 8.0 && m.m33 == 9.0);
Source

pub fn from_columns<SB>(columns: &[Vector<T, R, SB>]) -> Self
where SB: RawStorage<T, R>,

Builds a new matrix from its columns.

Panics if not enough columns are provided (for statically-sized matrices), or if all columns do not have the same dimensions.

§Example

let m = Matrix3::from_columns(&[ Vector3::new(1.0, 2.0, 3.0),  Vector3::new(4.0, 5.0, 6.0),  Vector3::new(7.0, 8.0, 9.0) ]);

assert!(m.m11 == 1.0 && m.m12 == 4.0 && m.m13 == 7.0 &&
        m.m21 == 2.0 && m.m22 == 5.0 && m.m23 == 8.0 &&
        m.m31 == 3.0 && m.m32 == 6.0 && m.m33 == 9.0);
Source§

impl<T, D: Dim> OMatrix<T, D, D>

Source

pub fn from_diagonal<SB: RawStorage<T, D>>(diag: &Vector<T, D, SB>) -> Self
where T: Zero,

Creates a square matrix with its diagonal set to diag and all other entries set to 0.

§Example

let m = Matrix3::from_diagonal(&Vector3::new(1.0, 2.0, 3.0));
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_diagonal(&DVector::from_row_slice(&[1.0, 2.0, 3.0]));

assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
        m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 3.0);
assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
        dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 3.0);
Source§

impl<T: Scalar, R: DimName, C: DimName> OMatrix<T, R, C>

§Constructors of statically-sized vectors or statically-sized matrices

Source

pub fn from_element(elem: T) -> Self

Creates a matrix or vector with all its elements set to elem.

§Example

let v = Vector3::from_element(2.0);
// The additional argument represents the vector dimension.
let dv = DVector::from_element(3, 2.0);
let m = Matrix2x3::from_element(2.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_element(2, 3, 2.0);

assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
        m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
        dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
Source

pub fn repeat(elem: T) -> Self

Creates a matrix or vector with all its elements set to elem.

Same as .from_element.

§Example

let v = Vector3::repeat(2.0);
// The additional argument represents the vector dimension.
let dv = DVector::repeat(3, 2.0);
let m = Matrix2x3::repeat(2.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::repeat(2, 3, 2.0);

assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
        m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
        dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
Source

pub fn zeros() -> Self
where T: Zero,

Creates a matrix or vector with all its elements set to 0.

§Example

let v = Vector3::<f32>::zeros();
// The argument represents the vector dimension.
let dv = DVector::<f32>::zeros(3);
let m = Matrix2x3::<f32>::zeros();
// The two arguments represent the matrix dimensions.
let dm = DMatrix::<f32>::zeros(2, 3);

assert!(v.x == 0.0 && v.y == 0.0 && v.z == 0.0);
assert!(dv[0] == 0.0 && dv[1] == 0.0 && dv[2] == 0.0);
assert!(m.m11 == 0.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 0.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 0.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 0.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_iterator<I>(iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix or vector with all its elements filled by an iterator.

The output matrix is filled column-by-column.

§Example

let v = Vector3::from_iterator((0..3).into_iter());
// The additional argument represents the vector dimension.
let dv = DVector::from_iterator(3, (0..3).into_iter());
let m = Matrix2x3::from_iterator((0..6).into_iter());
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_iterator(2, 3, (0..6).into_iter());

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
        m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
        dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
Source

pub fn from_row_iterator<I>(iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix or vector with all its elements filled by a row-major iterator.

The output matrix is filled row-by-row.

§Example

let v = Vector3::from_row_iterator((0..3).into_iter());
// The additional argument represents the vector dimension.
let dv = DVector::from_row_iterator(3, (0..3).into_iter());
let m = Matrix2x3::from_row_iterator((0..6).into_iter());
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_row_iterator(2, 3, (0..6).into_iter());

// For Vectors from_row_iterator is identical to from_iterator
assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn from_fn<F>(f: F) -> Self
where F: FnMut(usize, usize) -> T,

Creates a matrix or vector filled with the results of a function applied to each of its component coordinates.

§Example

let v = Vector3::from_fn(|i, _| i);
// The additional argument represents the vector dimension.
let dv = DVector::from_fn(3, |i, _| i);
let m = Matrix2x3::from_fn(|i, j| i * 3 + j);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_fn(2, 3, |i, j| i * 3 + j);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn identity() -> Self
where T: Zero + One,

Creates an identity matrix. If the matrix is not square, the largest square submatrix (starting at the first row and column) is set to the identity while all other entries are set to zero.

§Example

let m = Matrix2x3::<f32>::identity();
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::<f32>::identity(2, 3);

assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 1.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 1.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_diagonal_element(elt: T) -> Self
where T: Zero + One,

Creates a matrix filled with its diagonal filled with elt and all other components set to zero.

§Example

let m = Matrix2x3::from_diagonal_element(5.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_diagonal_element(2, 3, 5.0);

assert!(m.m11 == 5.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 5.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 5.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 5.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_partial_diagonal(elts: &[T]) -> Self
where T: Zero,

Creates a new matrix that may be rectangular. The first elts.len() diagonal elements are filled with the content of elts. Others are set to 0.

Panics if elts.len() is larger than the minimum among nrows and ncols.

§Example

let m = Matrix3::from_partial_diagonal(&[1.0, 2.0]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_partial_diagonal(3, 3, &[1.0, 2.0]);

assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
        m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 0.0);
assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
        dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 0.0);
Source§

impl<T: Scalar, R: DimName> OMatrix<T, R, Dyn>

§Constructors of matrices with a dynamic number of columns

Source

pub fn from_element(ncols: usize, elem: T) -> Self

Creates a matrix or vector with all its elements set to elem.

§Example

let v = Vector3::from_element(2.0);
// The additional argument represents the vector dimension.
let dv = DVector::from_element(3, 2.0);
let m = Matrix2x3::from_element(2.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_element(2, 3, 2.0);

assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
        m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
        dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
Source

pub fn repeat(ncols: usize, elem: T) -> Self

Creates a matrix or vector with all its elements set to elem.

Same as .from_element.

§Example

let v = Vector3::repeat(2.0);
// The additional argument represents the vector dimension.
let dv = DVector::repeat(3, 2.0);
let m = Matrix2x3::repeat(2.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::repeat(2, 3, 2.0);

assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
        m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
        dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
Source

pub fn zeros(ncols: usize) -> Self
where T: Zero,

Creates a matrix or vector with all its elements set to 0.

§Example

let v = Vector3::<f32>::zeros();
// The argument represents the vector dimension.
let dv = DVector::<f32>::zeros(3);
let m = Matrix2x3::<f32>::zeros();
// The two arguments represent the matrix dimensions.
let dm = DMatrix::<f32>::zeros(2, 3);

assert!(v.x == 0.0 && v.y == 0.0 && v.z == 0.0);
assert!(dv[0] == 0.0 && dv[1] == 0.0 && dv[2] == 0.0);
assert!(m.m11 == 0.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 0.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 0.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 0.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_iterator<I>(ncols: usize, iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix or vector with all its elements filled by an iterator.

The output matrix is filled column-by-column.

§Example

let v = Vector3::from_iterator((0..3).into_iter());
// The additional argument represents the vector dimension.
let dv = DVector::from_iterator(3, (0..3).into_iter());
let m = Matrix2x3::from_iterator((0..6).into_iter());
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_iterator(2, 3, (0..6).into_iter());

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
        m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
        dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
Source

pub fn from_row_iterator<I>(ncols: usize, iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix or vector with all its elements filled by a row-major iterator.

The output matrix is filled row-by-row.

§Example

let v = Vector3::from_row_iterator((0..3).into_iter());
// The additional argument represents the vector dimension.
let dv = DVector::from_row_iterator(3, (0..3).into_iter());
let m = Matrix2x3::from_row_iterator((0..6).into_iter());
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_row_iterator(2, 3, (0..6).into_iter());

// For Vectors from_row_iterator is identical to from_iterator
assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn from_fn<F>(ncols: usize, f: F) -> Self
where F: FnMut(usize, usize) -> T,

Creates a matrix or vector filled with the results of a function applied to each of its component coordinates.

§Example

let v = Vector3::from_fn(|i, _| i);
// The additional argument represents the vector dimension.
let dv = DVector::from_fn(3, |i, _| i);
let m = Matrix2x3::from_fn(|i, j| i * 3 + j);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_fn(2, 3, |i, j| i * 3 + j);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn identity(ncols: usize) -> Self
where T: Zero + One,

Creates an identity matrix. If the matrix is not square, the largest square submatrix (starting at the first row and column) is set to the identity while all other entries are set to zero.

§Example

let m = Matrix2x3::<f32>::identity();
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::<f32>::identity(2, 3);

assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 1.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 1.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_diagonal_element(ncols: usize, elt: T) -> Self
where T: Zero + One,

Creates a matrix filled with its diagonal filled with elt and all other components set to zero.

§Example

let m = Matrix2x3::from_diagonal_element(5.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_diagonal_element(2, 3, 5.0);

assert!(m.m11 == 5.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 5.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 5.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 5.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_partial_diagonal(ncols: usize, elts: &[T]) -> Self
where T: Zero,

Creates a new matrix that may be rectangular. The first elts.len() diagonal elements are filled with the content of elts. Others are set to 0.

Panics if elts.len() is larger than the minimum among nrows and ncols.

§Example

let m = Matrix3::from_partial_diagonal(&[1.0, 2.0]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_partial_diagonal(3, 3, &[1.0, 2.0]);

assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
        m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 0.0);
assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
        dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 0.0);
Source§

impl<T: Scalar, C: DimName> OMatrix<T, Dyn, C>

§Constructors of dynamic vectors and matrices with a dynamic number of rows

Source

pub fn from_element(nrows: usize, elem: T) -> Self

Creates a matrix or vector with all its elements set to elem.

§Example

let v = Vector3::from_element(2.0);
// The additional argument represents the vector dimension.
let dv = DVector::from_element(3, 2.0);
let m = Matrix2x3::from_element(2.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_element(2, 3, 2.0);

assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
        m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
        dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
Source

pub fn repeat(nrows: usize, elem: T) -> Self

Creates a matrix or vector with all its elements set to elem.

Same as .from_element.

§Example

let v = Vector3::repeat(2.0);
// The additional argument represents the vector dimension.
let dv = DVector::repeat(3, 2.0);
let m = Matrix2x3::repeat(2.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::repeat(2, 3, 2.0);

assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
        m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
        dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
Source

pub fn zeros(nrows: usize) -> Self
where T: Zero,

Creates a matrix or vector with all its elements set to 0.

§Example

let v = Vector3::<f32>::zeros();
// The argument represents the vector dimension.
let dv = DVector::<f32>::zeros(3);
let m = Matrix2x3::<f32>::zeros();
// The two arguments represent the matrix dimensions.
let dm = DMatrix::<f32>::zeros(2, 3);

assert!(v.x == 0.0 && v.y == 0.0 && v.z == 0.0);
assert!(dv[0] == 0.0 && dv[1] == 0.0 && dv[2] == 0.0);
assert!(m.m11 == 0.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 0.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 0.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 0.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_iterator<I>(nrows: usize, iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix or vector with all its elements filled by an iterator.

The output matrix is filled column-by-column.

§Example

let v = Vector3::from_iterator((0..3).into_iter());
// The additional argument represents the vector dimension.
let dv = DVector::from_iterator(3, (0..3).into_iter());
let m = Matrix2x3::from_iterator((0..6).into_iter());
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_iterator(2, 3, (0..6).into_iter());

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
        m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
        dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
Source

pub fn from_row_iterator<I>(nrows: usize, iter: I) -> Self
where I: IntoIterator<Item = T>,

Creates a matrix or vector with all its elements filled by a row-major iterator.

The output matrix is filled row-by-row.

§Example

let v = Vector3::from_row_iterator((0..3).into_iter());
// The additional argument represents the vector dimension.
let dv = DVector::from_row_iterator(3, (0..3).into_iter());
let m = Matrix2x3::from_row_iterator((0..6).into_iter());
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_row_iterator(2, 3, (0..6).into_iter());

// For Vectors from_row_iterator is identical to from_iterator
assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn from_fn<F>(nrows: usize, f: F) -> Self
where F: FnMut(usize, usize) -> T,

Creates a matrix or vector filled with the results of a function applied to each of its component coordinates.

§Example

let v = Vector3::from_fn(|i, _| i);
// The additional argument represents the vector dimension.
let dv = DVector::from_fn(3, |i, _| i);
let m = Matrix2x3::from_fn(|i, j| i * 3 + j);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_fn(2, 3, |i, j| i * 3 + j);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn identity(nrows: usize) -> Self
where T: Zero + One,

Creates an identity matrix. If the matrix is not square, the largest square submatrix (starting at the first row and column) is set to the identity while all other entries are set to zero.

§Example

let m = Matrix2x3::<f32>::identity();
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::<f32>::identity(2, 3);

assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 1.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 1.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_diagonal_element(nrows: usize, elt: T) -> Self
where T: Zero + One,

Creates a matrix filled with its diagonal filled with elt and all other components set to zero.

§Example

let m = Matrix2x3::from_diagonal_element(5.0);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_diagonal_element(2, 3, 5.0);

assert!(m.m11 == 5.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 5.0 && m.m23 == 0.0);
assert!(dm[(0, 0)] == 5.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 5.0 && dm[(1, 2)] == 0.0);
Source

pub fn from_partial_diagonal(nrows: usize, elts: &[T]) -> Self
where T: Zero,

Creates a new matrix that may be rectangular. The first elts.len() diagonal elements are filled with the content of elts. Others are set to 0.

Panics if elts.len() is larger than the minimum among nrows and ncols.

§Example

let m = Matrix3::from_partial_diagonal(&[1.0, 2.0]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_partial_diagonal(3, 3, &[1.0, 2.0]);

assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
        m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
        m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 0.0);
assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
        dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
        dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 0.0);
Source§

impl<T: Scalar, R: DimName, C: DimName> OMatrix<T, R, C>

Source

pub fn from_row_slice(data: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice in row-major order.

The order of elements in the slice must follow the usual mathematic writing, i.e., row-by-row.

§Example

let v = Vector3::from_row_slice(&[0, 1, 2]);
// The additional argument represents the vector dimension.
let dv = DVector::from_row_slice(&[0, 1, 2]);
let m = Matrix2x3::from_row_slice(&[0, 1, 2, 3, 4, 5]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_row_slice(2, 3, &[0, 1, 2, 3, 4, 5]);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn from_column_slice(data: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice in column-major order.

§Example

let v = Vector3::from_column_slice(&[0, 1, 2]);
// The additional argument represents the vector dimension.
let dv = DVector::from_column_slice(&[0, 1, 2]);
let m = Matrix2x3::from_column_slice(&[0, 1, 2, 3, 4, 5]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_column_slice(2, 3, &[0, 1, 2, 3, 4, 5]);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
        m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
        dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
Source§

impl<T: Scalar, R: DimName> OMatrix<T, R, Dyn>

Source

pub fn from_row_slice(data: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice in row-major order.

The order of elements in the slice must follow the usual mathematic writing, i.e., row-by-row.

§Example

let v = Vector3::from_row_slice(&[0, 1, 2]);
// The additional argument represents the vector dimension.
let dv = DVector::from_row_slice(&[0, 1, 2]);
let m = Matrix2x3::from_row_slice(&[0, 1, 2, 3, 4, 5]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_row_slice(2, 3, &[0, 1, 2, 3, 4, 5]);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn from_column_slice(data: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice in column-major order.

§Example

let v = Vector3::from_column_slice(&[0, 1, 2]);
// The additional argument represents the vector dimension.
let dv = DVector::from_column_slice(&[0, 1, 2]);
let m = Matrix2x3::from_column_slice(&[0, 1, 2, 3, 4, 5]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_column_slice(2, 3, &[0, 1, 2, 3, 4, 5]);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
        m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
        dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
Source§

impl<T: Scalar, C: DimName> OMatrix<T, Dyn, C>

Source

pub fn from_row_slice(data: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice in row-major order.

The order of elements in the slice must follow the usual mathematic writing, i.e., row-by-row.

§Example

let v = Vector3::from_row_slice(&[0, 1, 2]);
// The additional argument represents the vector dimension.
let dv = DVector::from_row_slice(&[0, 1, 2]);
let m = Matrix2x3::from_row_slice(&[0, 1, 2, 3, 4, 5]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_row_slice(2, 3, &[0, 1, 2, 3, 4, 5]);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
        m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
        dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
Source

pub fn from_column_slice(data: &[T]) -> Self

Creates a matrix with its elements filled with the components provided by a slice in column-major order.

§Example

let v = Vector3::from_column_slice(&[0, 1, 2]);
// The additional argument represents the vector dimension.
let dv = DVector::from_column_slice(&[0, 1, 2]);
let m = Matrix2x3::from_column_slice(&[0, 1, 2, 3, 4, 5]);
// The two additional arguments represent the matrix dimensions.
let dm = DMatrix::from_column_slice(2, 3, &[0, 1, 2, 3, 4, 5]);

assert!(v.x == 0 && v.y == 1 && v.z == 2);
assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
        m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
        dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);

Trait Implementations§

Source§

impl<T, R: DimName, C: DimName> Bounded for OMatrix<T, R, C>

Source§

fn max_value() -> Self

Returns the largest finite number this type can represent
Source§

fn min_value() -> Self

Returns the smallest finite number this type can represent
Source§

impl<T, R: Dim, C: Dim> From<[Matrix<<T as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<<T as SimdValue>::Element>>; 16]> for OMatrix<T, R, C>

Source§

fn from(arr: [OMatrix<T::Element, R, C>; 16]) -> Self

Converts to this type from the input type.
Source§

impl<T, R: Dim, C: Dim> From<[Matrix<<T as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<<T as SimdValue>::Element>>; 2]> for OMatrix<T, R, C>

Source§

fn from(arr: [OMatrix<T::Element, R, C>; 2]) -> Self

Converts to this type from the input type.
Source§

impl<T, R: Dim, C: Dim> From<[Matrix<<T as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<<T as SimdValue>::Element>>; 4]> for OMatrix<T, R, C>

Source§

fn from(arr: [OMatrix<T::Element, R, C>; 4]) -> Self

Converts to this type from the input type.
Source§

impl<T, R: Dim, C: Dim> From<[Matrix<<T as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<<T as SimdValue>::Element>>; 8]> for OMatrix<T, R, C>

Source§

fn from(arr: [OMatrix<T::Element, R, C>; 8]) -> Self

Converts to this type from the input type.
Source§

impl<T: SimdRealField, R, const D: usize> From<Isometry<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

Source§

fn from(iso: Isometry<T, R, D>) -> Self

Converts to this type from the input type.
Source§

impl<T: Scalar + Zero + One, const D: usize> From<Scale<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

Source§

fn from(t: Scale<T, D>) -> Self

Converts to this type from the input type.
Source§

impl<T: SimdRealField, R, const D: usize> From<Similarity<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

Source§

fn from(sim: Similarity<T, R, D>) -> Self

Converts to this type from the input type.
Source§

impl<T: RealField, C, const D: usize> From<Transform<T, C, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

Source§

fn from(t: Transform<T, C, D>) -> Self

Converts to this type from the input type.
Source§

impl<T: Scalar + Zero + One, const D: usize> From<Translation<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

Source§

fn from(t: Translation<T, D>) -> Self

Converts to this type from the input type.
Source§

impl<T: SimdComplexField, R: Dim, C: Dim> Normed for OMatrix<T, R, C>

Source§

type Norm = <T as SimdComplexField>::SimdRealField

The type of the norm.
Source§

fn norm(&self) -> T::SimdRealField

Computes the norm.
Source§

fn norm_squared(&self) -> T::SimdRealField

Computes the squared norm.
Source§

fn scale_mut(&mut self, n: Self::Norm)

Multiply self by n.
Source§

fn unscale_mut(&mut self, n: Self::Norm)

Divides self by n.
Source§

impl<T, D: DimName> One for OMatrix<T, D, D>

Source§

fn one() -> Self

Returns the multiplicative identity element of Self, 1. Read more
Source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
Source§

fn is_one(&self) -> bool
where Self: PartialEq,

Returns true if self is equal to the multiplicative identity. Read more
Source§

impl<'a, T, D: DimName> Product<&'a Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>> for OMatrix<T, D, D>

Source§

fn product<I: Iterator<Item = &'a OMatrix<T, D, D>>>( iter: I, ) -> OMatrix<T, D, D>

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl<T, D: DimName> Product for OMatrix<T, D, D>

Source§

fn product<I: Iterator<Item = OMatrix<T, D, D>>>(iter: I) -> OMatrix<T, D, D>

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl<T, R, C> SimdValue for OMatrix<T, R, C>
where T: Scalar + SimdValue, R: Dim, C: Dim, T::Element: Scalar, DefaultAllocator: Allocator<R, C>,

Source§

const LANES: usize = T::LANES

The number of lanes of this SIMD value.
Source§

type Element = Matrix<<T as SimdValue>::Element, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<<T as SimdValue>::Element>>

The type of the elements of each lane of this SIMD value.
Source§

type SimdBool = <T as SimdValue>::SimdBool

Type of the result of comparing two SIMD values like self.
Source§

fn splat(val: Self::Element) -> Self

Initializes an SIMD value with each lanes set to val.
Source§

fn extract(&self, i: usize) -> Self::Element

Extracts the i-th lane of self. Read more
Source§

unsafe fn extract_unchecked(&self, i: usize) -> Self::Element

Extracts the i-th lane of self without bound-checking. Read more
Source§

fn replace(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val. Read more
Source§

unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val without bound-checking. Read more
Source§

fn select(self, cond: Self::SimdBool, other: Self) -> Self

Merges self and other depending on the lanes of cond. Read more
Source§

fn map_lanes(self, f: impl Fn(Self::Element) -> Self::Element) -> Self
where Self: Clone,

Applies a function to each lane of self. Read more
Source§

fn zip_map_lanes( self, b: Self, f: impl Fn(Self::Element, Self::Element) -> Self::Element, ) -> Self
where Self: Clone,

Applies a function to each lane of self paired with the corresponding lane of b. Read more
Source§

impl<T1, T2, R1, C1, R2, C2> SubsetOf<Matrix<T2, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T2>>> for OMatrix<T1, R1, C1>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim, T1: Scalar, T2: Scalar + SupersetOf<T1>, DefaultAllocator: Allocator<R2, C2> + Allocator<R1, C1> + SameShapeAllocator<R1, C1, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,

Source§

fn to_superset(&self) -> OMatrix<T2, R2, C2>

The inclusion map: converts self to the equivalent element of its superset.
Source§

fn is_in_subset(m: &OMatrix<T2, R2, C2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
Source§

fn from_superset_unchecked(m: &OMatrix<T2, R2, C2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
Source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

impl<'a, T, C: Dim> Sum<&'a Matrix<T, Dyn, C, <DefaultAllocator as Allocator<Dyn, C>>::Buffer<T>>> for OMatrix<T, Dyn, C>

Source§

fn sum<I: Iterator<Item = &'a OMatrix<T, Dyn, C>>>( iter: I, ) -> OMatrix<T, Dyn, C>

§Example
let v = &DVector::repeat(3, 1.0f64);

assert_eq!(vec![v, v, v].into_iter().sum::<DVector<f64>>(),
           v + v + v);
§Panics

Panics if the iterator is empty:

iter::empty::<&DMatrix<f64>>().sum::<DMatrix<f64>>(); // panics!
Source§

impl<'a, T, R: DimName, C: DimName> Sum<&'a Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>> for OMatrix<T, R, C>

Source§

fn sum<I: Iterator<Item = &'a OMatrix<T, R, C>>>(iter: I) -> OMatrix<T, R, C>

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<T, C: Dim> Sum for OMatrix<T, Dyn, C>

Source§

fn sum<I: Iterator<Item = OMatrix<T, Dyn, C>>>(iter: I) -> OMatrix<T, Dyn, C>

§Example
assert_eq!(vec![DVector::repeat(3, 1.0f64),
                DVector::repeat(3, 1.0f64),
                DVector::repeat(3, 1.0f64)].into_iter().sum::<DVector<f64>>(),
           DVector::repeat(3, 1.0f64) + DVector::repeat(3, 1.0f64) + DVector::repeat(3, 1.0f64));
§Panics

Panics if the iterator is empty:

iter::empty::<DMatrix<f64>>().sum::<DMatrix<f64>>(); // panics!
Source§

impl<T, R: DimName, C: DimName> Sum for OMatrix<T, R, C>

Source§

fn sum<I: Iterator<Item = OMatrix<T, R, C>>>(iter: I) -> OMatrix<T, R, C>

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<T, R: DimName, C: DimName> Zero for OMatrix<T, R, C>

Source§

fn zero() -> Self

Returns the additive identity element of Self, 0. Read more
Source§

fn is_zero(&self) -> bool

Returns true if self is equal to the additive identity.
Source§

fn set_zero(&mut self)

Sets self to the additive identity element of Self, 0.