pub type Vector<T, D, S> = Matrix<T, D, U1, S>;
Expand description
A matrix with one column and D
rows.
Aliased Type§
struct Vector<T, D, S> {
pub data: S,
/* private fields */
}
Fields§
§data: S
The data storage that contains all the matrix components. Disappointed?
Well, if you came here to see how you can access the matrix components,
you may be in luck: you can access the individual components of all vectors with compile-time
dimensions <= 6 using field notation like this:
vec.x
, vec.y
, vec.z
, vec.w
, vec.a
, vec.b
. Reference and assignation work too:
let mut vec = Vector3::new(1.0, 2.0, 3.0);
vec.x = 10.0;
vec.y += 30.0;
assert_eq!(vec.x, 10.0);
assert_eq!(vec.y + 100.0, 132.0);
Similarly, for matrices with compile-time dimensions <= 6, you can use field notation
like this: mat.m11
, mat.m42
, etc. The first digit identifies the row to address
and the second digit identifies the column to address. So mat.m13
identifies the component
at the first row and third column (note that the count of rows and columns start at 1 instead
of 0 here. This is so we match the mathematical notation).
For all matrices and vectors, independently from their size, individual components can
be accessed and modified using indexing: vec[20]
, mat[(20, 19)]
. Here the indexing
starts at 0 as you would expect.
Implementations§
Source§impl<T, D: Dim, S> Vector<T, D, S>
impl<T, D: Dim, S> Vector<T, D, S>
§BLAS functions
Sourcepub fn axcpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, c: T, b: T)
pub fn axcpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, c: T, b: T)
Computes self = a * x * c + b * self
.
If b
is zero, self
is never read from.
§Example
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axcpy(5.0, &vec2, 2.0, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Sourcepub fn axpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, b: T)
pub fn axpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, b: T)
Computes self = a * x + b * self
.
If b
is zero, self
is never read from.
§Example
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axpy(10.0, &vec2, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Sourcepub fn gemv<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: One,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, R2> + AreMultipliable<R2, C2, D3, U1>,
pub fn gemv<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: One,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, R2> + AreMultipliable<R2, C2, D3, U1>,
Computes self = alpha * a * x + beta * self
, where a
is a matrix, x
a vector, and
alpha, beta
two scalars.
If beta
is zero, self
is never read.
§Example
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let mat = Matrix2::new(1.0, 2.0,
3.0, 4.0);
vec1.gemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 21.0));
Sourcepub fn sygemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: One,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
pub fn sygemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: One,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
Computes self = alpha * a * x + beta * self
, where a
is a symmetric matrix, x
a
vector, and alpha, beta
two scalars.
For hermitian matrices, use .hegemv
instead.
If beta
is zero, self
is never read. If self
is read, only its lower-triangular part
(including the diagonal) is actually read.
§Examples
let mat = Matrix2::new(1.0, 2.0,
2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));
// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.
let mat = Matrix2::new(1.0, 9999999.9999999,
2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));
Sourcepub fn hegemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: SimdComplexField,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
pub fn hegemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: SimdComplexField,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
Computes self = alpha * a * x + beta * self
, where a
is an hermitian matrix, x
a
vector, and alpha, beta
two scalars.
If beta
is zero, self
is never read. If self
is read, only its lower-triangular part
(including the diagonal) is actually read.
§Examples
let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(2.0, -0.1),
Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));
// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.
let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(99999999.9, 999999999.9),
Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));
Sourcepub fn gemv_tr<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: One,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
pub fn gemv_tr<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: One,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
Computes self = alpha * a.transpose() * x + beta * self
, where a
is a matrix, x
a vector, and
alpha, beta
two scalars.
If beta
is zero, self
is never read.
§Example
let mat = Matrix2::new(1.0, 3.0,
2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let expected = mat.transpose() * vec2 * 10.0 + vec1 * 5.0;
vec1.gemv_tr(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, expected);
Sourcepub fn gemv_ad<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: SimdComplexField,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
pub fn gemv_ad<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T,
)where
T: SimdComplexField,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
Computes self = alpha * a.adjoint() * x + beta * self
, where a
is a matrix, x
a vector, and
alpha, beta
two scalars.
For real matrices, this is the same as .gemv_tr
.
If beta
is zero, self
is never read.
§Example
let mat = Matrix2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0),
Complex::new(5.0, 6.0), Complex::new(7.0, 8.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
let expected = mat.adjoint() * vec2 * Complex::new(10.0, 20.0) + vec1 * Complex::new(5.0, 15.0);
vec1.gemv_ad(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, expected);
Source§impl<T, D: Dim, S: RawStorage<T, D>> Vector<T, D, S>
impl<T, D: Dim, S: RawStorage<T, D>> Vector<T, D, S>
Sourcepub unsafe fn vget_unchecked(&self, i: usize) -> &T
pub unsafe fn vget_unchecked(&self, i: usize) -> &T
Gets a reference to the i-th element of this column vector without bound checking.
§Safety
i
must be less than D
.
Source§impl<T, D: Dim, S: RawStorageMut<T, D>> Vector<T, D, S>
impl<T, D: Dim, S: RawStorageMut<T, D>> Vector<T, D, S>
Sourcepub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut T
pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut T
Gets a mutable reference to the i-th element of this column vector without bound checking.
§Safety
i
must be less than D
.
Source§impl<T: Scalar + Zero, D: DimAdd<U1>, S: RawStorage<T, D>> Vector<T, D, S>
impl<T: Scalar + Zero, D: DimAdd<U1>, S: RawStorage<T, D>> Vector<T, D, S>
Sourcepub fn to_homogeneous(&self) -> OVector<T, DimSum<D, U1>>
pub fn to_homogeneous(&self) -> OVector<T, DimSum<D, U1>>
Computes the coordinates in projective space of this vector, i.e., appends a 0
to its
coordinates.
Source§impl<T: Scalar + Field, S: RawStorage<T, U3>> Vector<T, U3, S>
impl<T: Scalar + Field, S: RawStorage<T, U3>> Vector<T, U3, S>
Sourcepub fn cross_matrix(&self) -> OMatrix<T, U3, U3>
pub fn cross_matrix(&self) -> OMatrix<T, U3, U3>
Computes the matrix M
such that for all vector v
we have M * v == self.cross(&v)
.
Source§impl<T: Scalar, D, S: RawStorage<T, D>> Vector<T, D, S>
impl<T: Scalar, D, S: RawStorage<T, D>> Vector<T, D, S>
§Swizzling
Source§impl<T: Scalar + Zero + One + ClosedAddAssign + ClosedSubAssign + ClosedMulAssign, D: Dim, S: Storage<T, D>> Vector<T, D, S>
impl<T: Scalar + Zero + One + ClosedAddAssign + ClosedSubAssign + ClosedMulAssign, D: Dim, S: Storage<T, D>> Vector<T, D, S>
§Interpolation
Sourcepub fn lerp<S2: Storage<T, D>>(
&self,
rhs: &Vector<T, D, S2>,
t: T,
) -> OVector<T, D>where
DefaultAllocator: Allocator<D>,
pub fn lerp<S2: Storage<T, D>>(
&self,
rhs: &Vector<T, D, S2>,
t: T,
) -> OVector<T, D>where
DefaultAllocator: Allocator<D>,
Returns self * (1.0 - t) + rhs * t
, i.e., the linear blend of the vectors x and y using the scalar value a.
The value for a is not restricted to the range [0, 1]
.
§Examples:
let x = Vector3::new(1.0, 2.0, 3.0);
let y = Vector3::new(10.0, 20.0, 30.0);
assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
Sourcepub fn slerp<S2: Storage<T, D>>(
&self,
rhs: &Vector<T, D, S2>,
t: T,
) -> OVector<T, D>
pub fn slerp<S2: Storage<T, D>>( &self, rhs: &Vector<T, D, S2>, t: T, ) -> OVector<T, D>
Computes the spherical linear interpolation between two non-zero vectors.
The result is a unit vector.
§Examples:
let v1 =Vector2::new(1.0, 2.0);
let v2 = Vector2::new(2.0, -3.0);
let v = v1.slerp(&v2, 1.0);
assert_eq!(v, v2.normalize());
Source§impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S>
impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S>
§Find the min and max components (vector-specific methods)
Sourcepub fn icamax(&self) -> usizewhere
T: ComplexField,
pub fn icamax(&self) -> usizewhere
T: ComplexField,
Computes the index of the vector component with the largest complex or real absolute value.
§Examples:
let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
assert_eq!(vec.icamax(), 2);
Sourcepub fn argmax(&self) -> (usize, T)where
T: PartialOrd,
pub fn argmax(&self) -> (usize, T)where
T: PartialOrd,
Computes the index and value of the vector component with the largest value.
§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmax(), (2, 13));
Sourcepub fn imax(&self) -> usizewhere
T: PartialOrd,
pub fn imax(&self) -> usizewhere
T: PartialOrd,
Computes the index of the vector component with the largest value.
§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imax(), 2);
Sourcepub fn iamax(&self) -> usizewhere
T: PartialOrd + Signed,
pub fn iamax(&self) -> usizewhere
T: PartialOrd + Signed,
Computes the index of the vector component with the largest absolute value.
§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamax(), 1);
Sourcepub fn argmin(&self) -> (usize, T)where
T: PartialOrd,
pub fn argmin(&self) -> (usize, T)where
T: PartialOrd,
Computes the index and value of the vector component with the smallest value.
§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmin(), (1, -15));
Sourcepub fn imin(&self) -> usizewhere
T: PartialOrd,
pub fn imin(&self) -> usizewhere
T: PartialOrd,
Computes the index of the vector component with the smallest value.
§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imin(), 1);