Struct nalgebra::linalg::Bidiagonal

source ·
pub struct Bidiagonal<T: ComplexField, R: DimMin<C>, C: Dim>
where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, DimMinimum<R, C>> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,
{ /* private fields */ }
Expand description

The bidiagonalization of a general matrix.

Implementations§

source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<T, R, C>
where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, DimMinimum<R, C>> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,

source

pub fn new(matrix: OMatrix<T, R, C>) -> Self

Computes the Bidiagonal decomposition using householder reflections.

source

pub fn is_upper_diagonal(&self) -> bool

Indicates whether this decomposition contains an upper-diagonal matrix.

source

pub fn unpack( self ) -> (OMatrix<T, R, DimMinimum<R, C>>, OMatrix<T, DimMinimum<R, C>, DimMinimum<R, C>>, OMatrix<T, DimMinimum<R, C>, C>)
where DefaultAllocator: Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T, DimMinimum<R, C>, C>,

Unpacks this decomposition into its three matrix factors (U, D, V^t).

The decomposed matrix M is equal to U * D * V^t.

source

pub fn d(&self) -> OMatrix<T, DimMinimum<R, C>, DimMinimum<R, C>>

Retrieves the upper trapezoidal submatrix R of this decomposition.

source

pub fn u(&self) -> OMatrix<T, R, DimMinimum<R, C>>

Computes the orthogonal matrix U of this U * D * V decomposition.

source

pub fn v_t(&self) -> OMatrix<T, DimMinimum<R, C>, C>

Computes the orthogonal matrix V_t of this U * D * V_t decomposition.

source

pub fn diagonal(&self) -> OVector<T::RealField, DimMinimum<R, C>>

The diagonal part of this decomposed matrix.

source

pub fn off_diagonal( &self ) -> OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>

The off-diagonal part of this decomposed matrix.

Trait Implementations§

source§

impl<T: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for Bidiagonal<T, R, C>
where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, DimMinimum<R, C>> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,

source§

fn clone(&self) -> Bidiagonal<T, R, C>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for Bidiagonal<T, R, C>
where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, DimMinimum<R, C>> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for Bidiagonal<T, R, C>
where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, DimMinimum<R, C>> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>>, OMatrix<T, R, C>: Copy, OVector<T, DimMinimum<R, C>>: Copy, OVector<T, DimDiff<DimMinimum<R, C>, U1>>: Copy,

Auto Trait Implementations§

§

impl<T, R, C> !RefUnwindSafe for Bidiagonal<T, R, C>

§

impl<T, R, C> !Send for Bidiagonal<T, R, C>

§

impl<T, R, C> !Sync for Bidiagonal<T, R, C>

§

impl<T, R, C> !Unpin for Bidiagonal<T, R, C>

§

impl<T, R, C> !UnwindSafe for Bidiagonal<T, R, C>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V