pub struct CubicSegment<P: VectorSpace> {
pub coeff: [P; 4],
}
Expand description
A segment of a cubic curve, used to hold precomputed coefficients for fast interpolation.
It is a Curve
with domain [0, 1]
.
Segments can be chained together to form a longer compound curve.
Fields§
§coeff: [P; 4]
Polynomial coefficients for the segment.
Implementations§
Source§impl<P: VectorSpace> CubicSegment<P>
impl<P: VectorSpace> CubicSegment<P>
Sourcepub fn acceleration(&self, t: f32) -> P
pub fn acceleration(&self, t: f32) -> P
Instantaneous acceleration of a point at parametric value t
.
Sourcepub fn new_bezier(points: [P; 4]) -> Self
pub fn new_bezier(points: [P; 4]) -> Self
Creates a cubic segment from four points, representing a Bezier curve.
Sourcepub fn iter_samples<'a, 'b: 'a>(
&'b self,
subdivisions: usize,
sample_function: impl FnMut(&Self, f32) -> P + 'a,
) -> impl Iterator<Item = P> + 'a
pub fn iter_samples<'a, 'b: 'a>( &'b self, subdivisions: usize, sample_function: impl FnMut(&Self, f32) -> P + 'a, ) -> impl Iterator<Item = P> + 'a
A flexible iterator used to sample curves with arbitrary functions.
This splits the curve into subdivisions
of evenly spaced t
values across the
length of the curve from start (t = 0) to end (t = n), where n = self.segment_count()
,
returning an iterator evaluating the curve with the supplied sample_function
at each t
.
For subdivisions = 2
, this will split the curve into two lines, or three points, and
return an iterator with 3 items, the three points, one at the start, middle, and end.
Sourcepub fn iter_positions(
&self,
subdivisions: usize,
) -> impl Iterator<Item = P> + '_
pub fn iter_positions( &self, subdivisions: usize, ) -> impl Iterator<Item = P> + '_
Iterate over the curve split into subdivisions
, sampling the position at each step.
Sourcepub fn iter_velocities(
&self,
subdivisions: usize,
) -> impl Iterator<Item = P> + '_
pub fn iter_velocities( &self, subdivisions: usize, ) -> impl Iterator<Item = P> + '_
Iterate over the curve split into subdivisions
, sampling the velocity at each step.
Sourcepub fn iter_accelerations(
&self,
subdivisions: usize,
) -> impl Iterator<Item = P> + '_
pub fn iter_accelerations( &self, subdivisions: usize, ) -> impl Iterator<Item = P> + '_
Iterate over the curve split into subdivisions
, sampling the acceleration at each step.
Source§impl CubicSegment<Vec2>
The CubicSegment<Vec2>
can be used as a 2-dimensional easing curve for animation.
impl CubicSegment<Vec2>
The CubicSegment<Vec2>
can be used as a 2-dimensional easing curve for animation.
The x-axis of the curve is time, and the y-axis is the output value. This struct provides methods for extremely fast solves for y given x.
Sourcepub fn new_bezier_easing(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self
Available on crate feature alloc
only.
pub fn new_bezier_easing(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self
alloc
only.Construct a cubic Bezier curve for animation easing, with control points p1
and p2
. A
cubic Bezier easing curve has control point p0
at (0, 0) and p3
at (1, 1), leaving only
p1
and p2
as the remaining degrees of freedom. The first and last control points are
fixed to ensure the animation begins at 0, and ends at 1.
This is a very common tool for UI animations that accelerate and decelerate smoothly. For
example, the ubiquitous “ease-in-out” is defined as (0.25, 0.1), (0.25, 1.0)
.
Sourcepub fn ease(&self, time: f32) -> f32
pub fn ease(&self, time: f32) -> f32
Given a time
within 0..=1
, returns an eased value that follows the cubic curve instead
of a straight line. This eased result may be outside the range 0..=1
, however it will
always start at 0 and end at 1: ease(0) = 0
and ease(1) = 1
.
let cubic_bezier = CubicSegment::new_bezier_easing((0.25, 0.1), (0.25, 1.0));
assert_eq!(cubic_bezier.ease(0.0), 0.0);
assert_eq!(cubic_bezier.ease(1.0), 1.0);
§How cubic easing works
Easing is generally accomplished with the help of “shaping functions”. These are curves that
start at (0,0) and end at (1,1). The x-axis of this plot is the current time
of the
animation, from 0 to 1. The y-axis is how far along the animation is, also from 0 to 1. You
can imagine that if the shaping function is a straight line, there is a 1:1 mapping between
the time
and how far along your animation is. If the time
= 0.5, the animation is
halfway through. This is known as linear interpolation, and results in objects animating
with a constant velocity, and no smooth acceleration or deceleration at the start or end.
y
│ ●
│ ⬈
│ ⬈
│ ⬈
│ ⬈
●─────────── x (time)
Using cubic Beziers, we have a curve that starts at (0,0), ends at (1,1), and follows a path
determined by the two remaining control points (handles). These handles allow us to define a
smooth curve. As time
(x-axis) progresses, we now follow the curve, and use the y
value
to determine how far along the animation is.
y
⬈➔●
│ ⬈
│ ↑
│ ↑
│ ⬈
●➔⬈───────── x (time)
To accomplish this, we need to be able to find the position y
on a curve, given the x
value. Cubic curves are implicit parametric functions like B(t) = (x,y). To find y
, we
first solve for t
that corresponds to the given x
(time
). We use the Newton-Raphson
root-finding method to quickly find a value of t
that is very near the desired value of
x
. Once we have this we can easily plug that t
into our curve’s position
function, to
find the y
component, which is how far along our animation should be. In other words:
Given
time
in0..=1
Use Newton’s method to find a value of
t
that results in B(t) = (x,y) wherex == time
Once a solution is found, use the resulting
y
value as the final result
Trait Implementations§
Source§impl<P: Clone + VectorSpace> Clone for CubicSegment<P>
impl<P: Clone + VectorSpace> Clone for CubicSegment<P>
Source§fn clone(&self) -> CubicSegment<P>
fn clone(&self) -> CubicSegment<P>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl<P: VectorSpace> Curve<P> for CubicSegment<P>
Available on crate feature curve
only.
impl<P: VectorSpace> Curve<P> for CubicSegment<P>
curve
only.Source§fn sample_unchecked(&self, t: f32) -> P
fn sample_unchecked(&self, t: f32) -> P
t
, extracting the associated value.
This is the unchecked version of sampling, which should only be used if the sample time t
is already known to lie within the curve’s domain. Read moreSource§fn sample(&self, t: f32) -> Option<T>
fn sample(&self, t: f32) -> Option<T>
t
, returning None
if the point is
outside of the curve’s domain.Source§fn sample_clamped(&self, t: f32) -> T
fn sample_clamped(&self, t: f32) -> T
t
, clamping t
to lie inside the
domain of the curve.Source§impl<P: Debug + VectorSpace> Debug for CubicSegment<P>
impl<P: Debug + VectorSpace> Debug for CubicSegment<P>
Source§impl<P: Default + VectorSpace> Default for CubicSegment<P>
impl<P: Default + VectorSpace> Default for CubicSegment<P>
Source§fn default() -> CubicSegment<P>
fn default() -> CubicSegment<P>
Source§impl<'de, P> Deserialize<'de> for CubicSegment<P>where
P: Deserialize<'de> + VectorSpace,
impl<'de, P> Deserialize<'de> for CubicSegment<P>where
P: Deserialize<'de> + VectorSpace,
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Source§impl<P: VectorSpace> Extend<CubicSegment<P>> for CubicCurve<P>
Available on crate feature alloc
only.
impl<P: VectorSpace> Extend<CubicSegment<P>> for CubicCurve<P>
alloc
only.Source§fn extend<T: IntoIterator<Item = CubicSegment<P>>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = CubicSegment<P>>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<P: VectorSpace> From<CubicSegment<P>> for RationalSegment<P>
impl<P: VectorSpace> From<CubicSegment<P>> for RationalSegment<P>
Source§fn from(value: CubicSegment<P>) -> Self
fn from(value: CubicSegment<P>) -> Self
Source§impl<P> FromReflect for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
impl<P> FromReflect for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
Source§fn from_reflect(reflect: &dyn PartialReflect) -> Option<Self>
fn from_reflect(reflect: &dyn PartialReflect) -> Option<Self>
Self
from a reflected value.Source§fn take_from_reflect(
reflect: Box<dyn PartialReflect>,
) -> Result<Self, Box<dyn PartialReflect>>
fn take_from_reflect( reflect: Box<dyn PartialReflect>, ) -> Result<Self, Box<dyn PartialReflect>>
Self
using,
constructing the value using from_reflect
if that fails. Read moreSource§impl<P> GetTypeRegistration for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
impl<P> GetTypeRegistration for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
Source§fn get_type_registration() -> TypeRegistration
fn get_type_registration() -> TypeRegistration
TypeRegistration
for this type.Source§fn register_type_dependencies(registry: &mut TypeRegistry)
fn register_type_dependencies(registry: &mut TypeRegistry)
Source§impl<P: PartialEq + VectorSpace> PartialEq for CubicSegment<P>
impl<P: PartialEq + VectorSpace> PartialEq for CubicSegment<P>
Source§impl<P> PartialReflect for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
impl<P> PartialReflect for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
Source§fn get_represented_type_info(&self) -> Option<&'static TypeInfo>
fn get_represented_type_info(&self) -> Option<&'static TypeInfo>
Source§fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError>
fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError>
Source§fn reflect_kind(&self) -> ReflectKind
fn reflect_kind(&self) -> ReflectKind
Source§fn reflect_ref(&self) -> ReflectRef<'_>
fn reflect_ref(&self) -> ReflectRef<'_>
Source§fn reflect_mut(&mut self) -> ReflectMut<'_>
fn reflect_mut(&mut self) -> ReflectMut<'_>
Source§fn reflect_owned(self: Box<Self>) -> ReflectOwned
fn reflect_owned(self: Box<Self>) -> ReflectOwned
Source§fn try_into_reflect(
self: Box<Self>,
) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>>
fn try_into_reflect( self: Box<Self>, ) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>>
Source§fn try_as_reflect(&self) -> Option<&dyn Reflect>
fn try_as_reflect(&self) -> Option<&dyn Reflect>
Source§fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect>
fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect>
Source§fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect>
fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect>
Source§fn as_partial_reflect(&self) -> &dyn PartialReflect
fn as_partial_reflect(&self) -> &dyn PartialReflect
Source§fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect
fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect
Source§fn reflect_partial_eq(&self, value: &dyn PartialReflect) -> Option<bool>
fn reflect_partial_eq(&self, value: &dyn PartialReflect) -> Option<bool>
Source§fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError>
fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError>
Self
using reflection. Read moreSource§fn apply(&mut self, value: &(dyn PartialReflect + 'static))
fn apply(&mut self, value: &(dyn PartialReflect + 'static))
Source§fn clone_value(&self) -> Box<dyn PartialReflect>
fn clone_value(&self) -> Box<dyn PartialReflect>
reflect_clone
. To convert reflected values to dynamic ones, use to_dynamic
.Self
into its dynamic representation. Read moreSource§fn to_dynamic(&self) -> Box<dyn PartialReflect>
fn to_dynamic(&self) -> Box<dyn PartialReflect>
Source§fn reflect_hash(&self) -> Option<u64>
fn reflect_hash(&self) -> Option<u64>
Source§fn is_dynamic(&self) -> bool
fn is_dynamic(&self) -> bool
Source§impl<P> Reflect for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
impl<P> Reflect for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
Source§fn as_any_mut(&mut self) -> &mut dyn Any
fn as_any_mut(&mut self) -> &mut dyn Any
&mut dyn Any
. Read moreSource§fn into_reflect(self: Box<Self>) -> Box<dyn Reflect>
fn into_reflect(self: Box<Self>) -> Box<dyn Reflect>
Source§fn as_reflect(&self) -> &dyn Reflect
fn as_reflect(&self) -> &dyn Reflect
Source§fn as_reflect_mut(&mut self) -> &mut dyn Reflect
fn as_reflect_mut(&mut self) -> &mut dyn Reflect
Source§impl<P: VectorSpace> SampleDerivative<P> for CubicSegment<P>
Available on crate feature curve
only.
impl<P: VectorSpace> SampleDerivative<P> for CubicSegment<P>
curve
only.Source§fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<P>
fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<P>
t
, extracting the associated value
in addition to its derivative. This is the unchecked version of sampling, which
should only be used if the sample time t
is already known to lie within the
curve’s domain. Read moreSource§fn sample_with_derivative(&self, t: f32) -> Option<WithDerivative<T>>
fn sample_with_derivative(&self, t: f32) -> Option<WithDerivative<T>>
t
, returning
None
if the point is outside of the curve’s domain.Source§fn sample_with_derivative_clamped(&self, t: f32) -> WithDerivative<T>
fn sample_with_derivative_clamped(&self, t: f32) -> WithDerivative<T>
t
, clamping t
to lie inside the domain of the curve.Source§impl<P: VectorSpace> SampleTwoDerivatives<P> for CubicSegment<P>
Available on crate feature curve
only.
impl<P: VectorSpace> SampleTwoDerivatives<P> for CubicSegment<P>
curve
only.Source§fn sample_with_two_derivatives_unchecked(&self, t: f32) -> WithTwoDerivatives<P>
fn sample_with_two_derivatives_unchecked(&self, t: f32) -> WithTwoDerivatives<P>
t
, extracting the associated value
in addition to two derivatives. This is the unchecked version of sampling, which
should only be used if the sample time t
is already known to lie within the
curve’s domain. Read moreSource§fn sample_with_two_derivatives(&self, t: f32) -> Option<WithTwoDerivatives<T>>
fn sample_with_two_derivatives(&self, t: f32) -> Option<WithTwoDerivatives<T>>
t
, returning
None
if the point is outside of the curve’s domain.Source§fn sample_with_two_derivatives_clamped(&self, t: f32) -> WithTwoDerivatives<T>
fn sample_with_two_derivatives_clamped(&self, t: f32) -> WithTwoDerivatives<T>
t
, clamping t
to lie inside the domain of the curve.Source§impl<P> Serialize for CubicSegment<P>where
P: Serialize + VectorSpace,
impl<P> Serialize for CubicSegment<P>where
P: Serialize + VectorSpace,
Source§impl<P> Struct for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
impl<P> Struct for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
Source§fn field(&self, name: &str) -> Option<&dyn PartialReflect>
fn field(&self, name: &str) -> Option<&dyn PartialReflect>
name
as a &dyn PartialReflect
.Source§fn field_mut(&mut self, name: &str) -> Option<&mut dyn PartialReflect>
fn field_mut(&mut self, name: &str) -> Option<&mut dyn PartialReflect>
name
as a
&mut dyn PartialReflect
.Source§fn field_at(&self, index: usize) -> Option<&dyn PartialReflect>
fn field_at(&self, index: usize) -> Option<&dyn PartialReflect>
index
as a
&dyn PartialReflect
.Source§fn field_at_mut(&mut self, index: usize) -> Option<&mut dyn PartialReflect>
fn field_at_mut(&mut self, index: usize) -> Option<&mut dyn PartialReflect>
index
as a &mut dyn PartialReflect
.Source§fn name_at(&self, index: usize) -> Option<&str>
fn name_at(&self, index: usize) -> Option<&str>
index
.Source§fn iter_fields(&self) -> FieldIter<'_>
fn iter_fields(&self) -> FieldIter<'_>
fn to_dynamic_struct(&self) -> DynamicStruct
Source§fn clone_dynamic(&self) -> DynamicStruct
fn clone_dynamic(&self) -> DynamicStruct
to_dynamic_struct
insteadDynamicStruct
.Source§fn get_represented_struct_info(&self) -> Option<&'static StructInfo>
fn get_represented_struct_info(&self) -> Option<&'static StructInfo>
None
if TypeInfo
is not available.Source§impl<P> TypePath for CubicSegment<P>
impl<P> TypePath for CubicSegment<P>
Source§fn type_path() -> &'static str
fn type_path() -> &'static str
Source§fn short_type_path() -> &'static str
fn short_type_path() -> &'static str
Source§fn type_ident() -> Option<&'static str>
fn type_ident() -> Option<&'static str>
Source§fn crate_name() -> Option<&'static str>
fn crate_name() -> Option<&'static str>
Source§impl<P> Typed for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
impl<P> Typed for CubicSegment<P>where
CubicSegment<P>: Any + Send + Sync,
P: TypePath + VectorSpace,
[P; 4]: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
impl<P: Copy + VectorSpace> Copy for CubicSegment<P>
impl<P: VectorSpace> StructuralPartialEq for CubicSegment<P>
Auto Trait Implementations§
impl<P> Freeze for CubicSegment<P>where
P: Freeze,
impl<P> RefUnwindSafe for CubicSegment<P>where
P: RefUnwindSafe,
impl<P> Send for CubicSegment<P>where
P: Send,
impl<P> Sync for CubicSegment<P>where
P: Sync,
impl<P> Unpin for CubicSegment<P>where
P: Unpin,
impl<P> UnwindSafe for CubicSegment<P>where
P: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<C, T> CurveExt<T> for Cwhere
C: Curve<T>,
impl<C, T> CurveExt<T> for Cwhere
C: Curve<T>,
Source§fn sample_iter(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = Option<T>>
fn sample_iter( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = Option<T>>
curve
only.n >= 0
points on this curve at the parameter values t_n
,
returning None
if the point is outside of the curve’s domain. Read moreSource§fn sample_iter_unchecked(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>
fn sample_iter_unchecked( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>
curve
only.n >= 0
points on this curve at the parameter values t_n
,
extracting the associated values. This is the unchecked version of sampling, which should
only be used if the sample times t_n
are already known to lie within the curve’s domain. Read moreSource§fn sample_iter_clamped(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>
fn sample_iter_clamped( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>
curve
only.n >= 0
points on this curve at the parameter values t_n
,
clamping t_n
to lie inside the domain of the curve. Read moreSource§fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>where
F: Fn(T) -> S,
fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>where
F: Fn(T) -> S,
curve
only.f
; i.e., if the
sample at time t
for this curve is x
, the value at time t
on the new curve will be
f(x)
.Source§fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
curve
only.Curve
whose parameter space is related to the parameter space of this curve
by f
. For each time t
, the sample from the new curve at time t
is the sample from
this curve at time f(t)
. The given domain
will be the domain of the new curve. The
function f
is expected to take domain
into self.domain()
. Read moreSource§fn reparametrize_linear(
self,
domain: Interval,
) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>
fn reparametrize_linear( self, domain: Interval, ) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>
curve
only.Source§fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
curve
only.Source§fn graph(self) -> GraphCurve<T, Self>
fn graph(self) -> GraphCurve<T, Self>
curve
only.Source§fn zip<S, C>(
self,
other: C,
) -> Result<ZipCurve<T, S, Self, C>, InvalidIntervalError>
fn zip<S, C>( self, other: C, ) -> Result<ZipCurve<T, S, Self, C>, InvalidIntervalError>
curve
only.Source§fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>where
C: Curve<T>,
fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>where
C: Curve<T>,
curve
only.Source§fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>
fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>
curve
only.Source§fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>
fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>
curve
only.Source§fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>
fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>
curve
only.Source§fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>
fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>
curve
only.Source§fn chain_continue<C>(
self,
other: C,
) -> Result<ContinuationCurve<T, Self, C>, ChainError>where
T: VectorSpace,
C: Curve<T>,
fn chain_continue<C>(
self,
other: C,
) -> Result<ContinuationCurve<T, Self, C>, ChainError>where
T: VectorSpace,
C: Curve<T>,
curve
only.Source§fn samples(
&self,
samples: usize,
) -> Result<impl Iterator<Item = T>, ResamplingError>
fn samples( &self, samples: usize, ) -> Result<impl Iterator<Item = T>, ResamplingError>
curve
only.Source§impl<C, T> CurveResampleExt<T> for C
impl<C, T> CurveResampleExt<T> for C
Source§fn resample<I>(
&self,
segments: usize,
interpolation: I,
) -> Result<SampleCurve<T, I>, ResamplingError>
fn resample<I>( &self, segments: usize, interpolation: I, ) -> Result<SampleCurve<T, I>, ResamplingError>
curve
and alloc
only.Curve
to produce a new one that is defined by interpolation over equally
spaced sample values, using the provided interpolation
to interpolate between adjacent samples.
The curve is interpolated on segments
segments between samples. For example, if segments
is 1,
only the start and end points of the curve are used as samples; if segments
is 2, a sample at
the midpoint is taken as well, and so on. Read moreSource§fn resample_auto(
&self,
segments: usize,
) -> Result<SampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
fn resample_auto(
&self,
segments: usize,
) -> Result<SampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
curve
and alloc
only.Curve
to produce a new one that is defined by interpolation over equally
spaced sample values, using automatic interpolation to interpolate between adjacent samples.
The curve is interpolated on segments
segments between samples. For example, if segments
is 1,
only the start and end points of the curve are used as samples; if segments
is 2, a sample at
the midpoint is taken as well, and so on. Read moreSource§fn resample_uneven<I>(
&self,
sample_times: impl IntoIterator<Item = f32>,
interpolation: I,
) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
fn resample_uneven<I>( &self, sample_times: impl IntoIterator<Item = f32>, interpolation: I, ) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
curve
and alloc
only.Source§fn resample_uneven_auto(
&self,
sample_times: impl IntoIterator<Item = f32>,
) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
fn resample_uneven_auto(
&self,
sample_times: impl IntoIterator<Item = f32>,
) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>where
T: StableInterpolate,
curve
and alloc
only.Curve
to produce a new one that is defined by automatic interpolation over
samples taken at the given set of times. The given sample_times
are expected to contain at least
two valid times within the curve’s domain interval. Read moreSource§impl<T, C> CurveWithDerivative<T> for Cwhere
T: HasTangent,
C: SampleDerivative<T>,
impl<T, C> CurveWithDerivative<T> for Cwhere
T: HasTangent,
C: SampleDerivative<T>,
Source§fn with_derivative(self) -> SampleDerivativeWrapper<C>
fn with_derivative(self) -> SampleDerivativeWrapper<C>
curve
only.Source§impl<T, C> CurveWithTwoDerivatives<T> for C
impl<T, C> CurveWithTwoDerivatives<T> for C
Source§fn with_two_derivatives(self) -> SampleTwoDerivativesWrapper<C>
fn with_two_derivatives(self) -> SampleTwoDerivativesWrapper<C>
curve
only.Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
, which can then be
downcast
into Box<dyn ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
, which can then be further
downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DynamicTypePath for Twhere
T: TypePath,
impl<T> DynamicTypePath for Twhere
T: TypePath,
Source§fn reflect_type_path(&self) -> &str
fn reflect_type_path(&self) -> &str
TypePath::type_path
.Source§fn reflect_short_type_path(&self) -> &str
fn reflect_short_type_path(&self) -> &str
Source§fn reflect_type_ident(&self) -> Option<&str>
fn reflect_type_ident(&self) -> Option<&str>
TypePath::type_ident
.Source§fn reflect_crate_name(&self) -> Option<&str>
fn reflect_crate_name(&self) -> Option<&str>
TypePath::crate_name
.Source§fn reflect_module_path(&self) -> Option<&str>
fn reflect_module_path(&self) -> Option<&str>
Source§impl<T> DynamicTyped for Twhere
T: Typed,
impl<T> DynamicTyped for Twhere
T: Typed,
Source§fn reflect_type_info(&self) -> &'static TypeInfo
fn reflect_type_info(&self) -> &'static TypeInfo
Typed::type_info
.Source§impl<S> GetField for Swhere
S: Struct,
impl<S> GetField for Swhere
S: Struct,
Source§impl<T> GetPath for T
impl<T> GetPath for T
Source§fn reflect_path<'p>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&(dyn PartialReflect + 'static), ReflectPathError<'p>>
fn reflect_path<'p>( &self, path: impl ReflectPath<'p>, ) -> Result<&(dyn PartialReflect + 'static), ReflectPathError<'p>>
path
. Read moreSource§fn reflect_path_mut<'p>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut (dyn PartialReflect + 'static), ReflectPathError<'p>>
fn reflect_path_mut<'p>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut (dyn PartialReflect + 'static), ReflectPathError<'p>>
path
. Read moreSource§fn path<'p, T>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&T, ReflectPathError<'p>>where
T: Reflect,
fn path<'p, T>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&T, ReflectPathError<'p>>where
T: Reflect,
path
. Read moreSource§fn path_mut<'p, T>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut T, ReflectPathError<'p>>where
T: Reflect,
fn path_mut<'p, T>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut T, ReflectPathError<'p>>where
T: Reflect,
path
. Read moreSource§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more