pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> { /* private fields */ }
Expand description
A system parameter that provides selective access to the Component
data stored in a World
.
Queries enable systems to access entity identifiers and components without requiring direct access to the World
.
Its iterators and getter methods return query items, which are types containing data related to an entity.
Query
is a generic data structure that accepts two type parameters:
D
(query data): The type of data fetched by the query, which will be returned as the query item. Only entities that match the requested data will generate an item. Must implement theQueryData
trait.F
(query filter): An optional set of conditions that determine whether query items should be kept or discarded. This defaults tounit
, which means no additional filters will be applied. Must implement theQueryFilter
trait.
§Similar parameters
Query
has few sibling SystemParam
s, which perform additional validation:
Single
- Exactly one matching query item.Option<Single>
- Zero or one matching query item.Populated
- At least one matching query item.
These parameters will prevent systems from running if their requirements are not met.
§System parameter declaration
A query should always be declared as a system parameter.
This section shows the most common idioms involving the declaration of Query
.
§Component access
You can fetch an entity’s component by specifying a reference to that component in the query’s data parameter:
// A component can be accessed by a shared reference...
fn immutable_query(query: Query<&ComponentA>) {
// ...
}
// ...or by a mutable reference.
fn mutable_query(query: Query<&mut ComponentA>) {
// ...
}
Note that components need to be behind a reference (&
or &mut
), or the query will not compile:
// This needs to be `&ComponentA` or `&mut ComponentA` in order to compile.
fn invalid_query(query: Query<ComponentA>) {
// ...
}
§Query filtering
Setting the query filter type parameter will ensure that each query item satisfies the given condition:
// `ComponentA` data will be accessed, but only for entities that also contain `ComponentB`.
fn filtered_query(query: Query<&ComponentA, With<ComponentB>>) {
// ...
}
Note that the filter is With<ComponentB>
, not With<&ComponentB>
. Unlike query data, With
does require components to be behind a reference.
§QueryData
or QueryFilter
tuples
Using tuple
s, each Query
type parameter can contain multiple elements.
In the following example two components are accessed simultaneously, and the query items are filtered on two conditions:
fn complex_query(
query: Query<(&mut ComponentA, &ComponentB), (With<ComponentC>, Without<ComponentD>)>
) {
// ...
}
Note that this currently only works on tuples with 15 or fewer items. You may nest tuples to get around this limit:
fn nested_query(
query: Query<(&ComponentA, &ComponentB, (&mut ComponentC, &mut ComponentD))>
) {
// ...
}
§Entity identifier access
You can access Entity
, the entity identifier, by including it in the query data parameter:
fn entity_id_query(query: Query<(Entity, &ComponentA)>) {
// ...
}
Be aware that Entity
is not a component, so it does not need to be behind a reference.
§Optional component access
A component can be made optional by wrapping it into an Option
. In the following example, a
query item will still be generated even if the queried entity does not contain ComponentB
.
When this is the case, Option<&ComponentB>
’s corresponding value will be None
.
// A queried items must contain `ComponentA`. If they also contain `ComponentB`, its value will
// be fetched as well.
fn optional_component_query(query: Query<(&ComponentA, Option<&ComponentB>)>) {
// ...
}
Optional components can hurt performance in some cases, so please read the performance
section to learn more about them. Additionally, if you need to declare several optional
components, you may be interested in using AnyOf
.
§Disjoint queries
A system cannot contain two queries that break Rust’s mutability rules, or else it will panic
when initialized. This can often be fixed with the Without
filter, which makes the queries
disjoint.
In the following example, the two queries can mutably access the same &mut Health
component
if an entity has both the Player
and Enemy
components. Bevy will catch this and panic,
however, instead of breaking Rust’s mutability rules:
fn randomize_health(
player_query: Query<&mut Health, With<Player>>,
enemy_query: Query<&mut Health, With<Enemy>>,
) {
// ...
}
Adding a Without
filter will disjoint the queries. In the following example, any entity
that has both the Player
and Enemy
components will be excluded from both queries:
fn randomize_health(
player_query: Query<&mut Health, (With<Player>, Without<Enemy>)>,
enemy_query: Query<&mut Health, (With<Enemy>, Without<Player>)>,
) {
// ...
}
An alternative solution to this problem would be to wrap the conflicting queries in
ParamSet
.
§Whole Entity Access
EntityRef
can be used in a query to gain read-only access to all components of an entity.
This is useful when dynamically fetching components instead of baking them into the query type.
fn all_components_query(query: Query<(EntityRef, &ComponentA)>) {
// ...
}
As EntityRef
can read any component on an entity, a query using it will conflict with any
mutable component access.
// `EntityRef` provides read access to *all* components on an entity. When combined with
// `&mut ComponentA` in the same query, it creates a conflict because `EntityRef` could read
// `&ComponentA` while `&mut ComponentA` attempts to modify it - violating Rust's borrowing
// rules.
fn invalid_query(query: Query<(EntityRef, &mut ComponentA)>) {
// ...
}
It is strongly advised to couple EntityRef
queries with the use of either With
/
Without
filters or ParamSet
s. Not only does this improve the performance and
parallelization of the system, but it enables systems to gain mutable access to other
components:
// The first query only reads entities that have `ComponentA`, while the second query only
// modifies entities that *don't* have `ComponentA`. Because neither query will access the same
// entity, this system does not conflict.
fn disjoint_query(
query_a: Query<EntityRef, With<ComponentA>>,
query_b: Query<&mut ComponentB, Without<ComponentA>>,
) {
// ...
}
The fundamental rule: EntityRef
’s ability to read all components means it can never
coexist with mutable access. With
/ Without
filters can guarantee this by keeping the
queries on completely separate entities.
§Accessing query items
The following table summarizes the behavior of safe methods that can be used to get query items:
Query methods | Effect |
---|---|
iter [_mut ] | Returns an iterator over all query items. |
iter[_mut]().for_each() ,par_iter [_mut ] | Runs a specified function for each query item. |
iter_many [_unique ][_mut ] | Iterates over query items that match a list of entities. |
iter_combinations [_mut ] | Iterates over all combinations of query items. |
single [_mut ] | Returns a single query item if only one exists. |
get [_mut ] | Returns the query item for a specified entity. |
get_many [_unique ][_mut ] | Returns all query items that match a list of entities. |
There are two methods for each type of query operation: immutable and mutable (ending with _mut
).
When using immutable methods, the query items returned are of type ROQueryItem
, a read-only version of the query item.
In this circumstance, every mutable reference in the query fetch type parameter is substituted by a shared reference.
§Performance
Creating a Query
is a low-cost constant operation. Iterating it, on the other hand, fetches
data from the world and generates items, which can have a significant computational cost.
Two systems cannot be executed in parallel if both access the same component type where at least one of the accesses is mutable. Because of this, it is recommended for queries to only fetch mutable access to components when necessary, since immutable access can be parallelized.
Query filters (With
/ Without
) can improve performance because they narrow the kinds of
entities that can be fetched. Systems that access fewer kinds of entities are more likely to be
parallelized by the scheduler.
On the other hand, be careful using optional components (Option<&ComponentA>
) and
EntityRef
because they broaden the amount of entities kinds that can be accessed. This is
especially true of a query that only fetches optional components or EntityRef
, as the
query would iterate over all entities in the world.
There are two types of component storage types: Table
and SparseSet
. Table
offers
fast iteration speeds, but slower insertion and removal speeds. SparseSet
is the opposite:
it offers fast component insertion and removal speeds, but slower iteration speeds.
The following table compares the computational complexity of the various methods and operations, where:
- n is the number of entities that match the query.
- r is the number of elements in a combination.
- k is the number of involved entities in the operation.
- a is the number of archetypes in the world.
- C is the binomial coefficient, used to count combinations. nCr is read as “n choose r” and is equivalent to the number of distinct unordered subsets of r elements that can be taken from a set of n elements.
Query operation | Computational complexity |
---|---|
iter [_mut ] | O(n) |
iter[_mut]().for_each() ,par_iter [_mut ] | O(n) |
iter_many [_mut ] | O(k) |
iter_combinations [_mut ] | O(nCr) |
single [_mut ] | O(a) |
get [_mut ] | O(1) |
get_many | O(k) |
get_many_mut | O(k2) |
Archetype-based filtering (With , Without , Or ) | O(a) |
Change detection filtering (Added , Changed ) | O(a + n) |
§Iterator::for_each
The for_each
methods appear to be generally faster than for
-loops when run on worlds with
high archetype fragmentation, and may enable additional optimizations like autovectorization. It
is strongly advised to only use Iterator::for_each
if it tangibly improves performance.
Always profile or benchmark before and after the change!
fn system(query: Query<&ComponentA>) {
// This may result in better performance...
query.iter().for_each(|component| {
// ...
});
// ...than this. Always benchmark to validate the difference!
for component in query.iter() {
// ...
}
}
Implementations§
Source§impl<'w, 's, D: QueryData, F: QueryFilter> Query<'w, 's, D, F>
impl<'w, 's, D: QueryData, F: QueryFilter> Query<'w, 's, D, F>
If the given entity
contains the R
Relationship
component, returns the
target entity of that relationship.
Sourcepub fn relationship_sources<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> impl Iterator<Item = Entity> + 'w
pub fn relationship_sources<S: RelationshipTarget>( &'w self, entity: Entity, ) -> impl Iterator<Item = Entity> + 'w
If the given entity
contains the S
RelationshipTarget
component, returns the
source entities stored on that component.
Sourcepub fn root_ancestor<R: Relationship>(&'w self, entity: Entity) -> Entity
pub fn root_ancestor<R: Relationship>(&'w self, entity: Entity) -> Entity
Recursively walks up the tree defined by the given R
Relationship
until
there are no more related entities, returning the “root entity” of the relationship hierarchy.
§Warning
For relationship graphs that contain loops, this could loop infinitely. If your relationship is not a tree (like Bevy’s hierarchy), be sure to stop if you encounter a duplicate entity.
Sourcepub fn iter_leaves<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> impl Iterator<Item = Entity> + 'wwhere
<D as QueryData>::ReadOnly: QueryData<Item<'w> = &'w S>,
SourceIter<'w, S>: DoubleEndedIterator,
pub fn iter_leaves<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> impl Iterator<Item = Entity> + 'wwhere
<D as QueryData>::ReadOnly: QueryData<Item<'w> = &'w S>,
SourceIter<'w, S>: DoubleEndedIterator,
Iterates all “leaf entities” as defined by the RelationshipTarget
hierarchy.
§Warning
For relationship graphs that contain loops, this could loop infinitely. If your relationship is not a tree (like Bevy’s hierarchy), be sure to stop if you encounter a duplicate entity.
Sourcepub fn iter_siblings<R: Relationship>(
&'w self,
entity: Entity,
) -> impl Iterator<Item = Entity> + 'w
pub fn iter_siblings<R: Relationship>( &'w self, entity: Entity, ) -> impl Iterator<Item = Entity> + 'w
Iterates all sibling entities that also have the R
Relationship
with the same target entity.
Sourcepub fn iter_descendants<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> DescendantIter<'w, 's, D, F, S> ⓘ
pub fn iter_descendants<S: RelationshipTarget>( &'w self, entity: Entity, ) -> DescendantIter<'w, 's, D, F, S> ⓘ
Iterates all descendant entities as defined by the given entity
’s RelationshipTarget
and their recursive
RelationshipTarget
.
§Warning
For relationship graphs that contain loops, this could loop infinitely. If your relationship is not a tree (like Bevy’s hierarchy), be sure to stop if you encounter a duplicate entity.
Sourcepub fn iter_descendants_depth_first<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> DescendantDepthFirstIter<'w, 's, D, F, S> ⓘ
pub fn iter_descendants_depth_first<S: RelationshipTarget>( &'w self, entity: Entity, ) -> DescendantDepthFirstIter<'w, 's, D, F, S> ⓘ
Iterates all descendant entities as defined by the given entity
’s RelationshipTarget
and their recursive
RelationshipTarget
in depth-first order.
§Warning
For relationship graphs that contain loops, this could loop infinitely. If your relationship is not a tree (like Bevy’s hierarchy), be sure to stop if you encounter a duplicate entity.
Sourcepub fn iter_ancestors<R: Relationship>(
&'w self,
entity: Entity,
) -> AncestorIter<'w, 's, D, F, R> ⓘ
pub fn iter_ancestors<R: Relationship>( &'w self, entity: Entity, ) -> AncestorIter<'w, 's, D, F, R> ⓘ
Iterates all ancestors of the given entity
as defined by the R
Relationship
.
§Warning
For relationship graphs that contain loops, this could loop infinitely. If your relationship is not a tree (like Bevy’s hierarchy), be sure to stop if you encounter a duplicate entity.
Source§impl<'w, 's, D: QueryData, F: QueryFilter> Query<'w, 's, D, F>
impl<'w, 's, D: QueryData, F: QueryFilter> Query<'w, 's, D, F>
Sourcepub fn as_readonly(&self) -> Query<'_, 's, D::ReadOnly, F>
pub fn as_readonly(&self) -> Query<'_, 's, D::ReadOnly, F>
Returns another Query
from this that fetches the read-only version of the query items.
For example, Query<(&mut D1, &D2, &mut D3), With<F>>
will become Query<(&D1, &D2, &D3), With<F>>
.
This can be useful when working around the borrow checker,
or reusing functionality between systems via functions that accept query types.
§See also
into_readonly
for a version that consumes the Query
to return one with the full 'world
lifetime.
Sourcepub fn into_readonly(self) -> Query<'w, 's, D::ReadOnly, F>
pub fn into_readonly(self) -> Query<'w, 's, D::ReadOnly, F>
Returns another Query
from this that fetches the read-only version of the query items.
For example, Query<(&mut D1, &D2, &mut D3), With<F>>
will become Query<(&D1, &D2, &D3), With<F>>
.
This can be useful when working around the borrow checker,
or reusing functionality between systems via functions that accept query types.
§See also
as_readonly
for a version that borrows the Query
instead of consuming it.
Sourcepub fn reborrow(&mut self) -> Query<'_, 's, D, F>
pub fn reborrow(&mut self) -> Query<'_, 's, D, F>
Returns a new Query
reborrowing the access from this one. The current query will be unusable
while the new one exists.
§Example
For example this allows to call other methods or other systems that require an owned Query
without
completely giving up ownership of it.
fn helper_system(query: Query<&ComponentA>) { /* ... */}
fn system(mut query: Query<&ComponentA>) {
helper_system(query.reborrow());
// Can still use query here:
for component in &query {
// ...
}
}
Sourcepub unsafe fn reborrow_unsafe(&self) -> Query<'_, 's, D, F>
pub unsafe fn reborrow_unsafe(&self) -> Query<'_, 's, D, F>
Returns a new Query
reborrowing the access from this one.
The current query will still be usable while the new one exists, but must not be used in a way that violates aliasing.
§Safety
This function makes it possible to violate Rust’s aliasing guarantees. You must make sure this call does not result in a mutable or shared reference to a component with a mutable reference.
§See also
reborrow
for the safe versions.
Sourcepub fn iter(&self) -> QueryIter<'_, 's, D::ReadOnly, F> ⓘ
pub fn iter(&self) -> QueryIter<'_, 's, D::ReadOnly, F> ⓘ
Returns an Iterator
over the read-only query items.
This iterator is always guaranteed to return results from each matching entity once and only once. Iteration order is not guaranteed.
§Example
Here, the report_names_system
iterates over the Player
component of every entity that contains it:
fn report_names_system(query: Query<&Player>) {
for player in &query {
println!("Say hello to {}!", player.name);
}
}
§See also
iter_mut
for mutable query items.
Sourcepub fn iter_mut(&mut self) -> QueryIter<'_, 's, D, F> ⓘ
pub fn iter_mut(&mut self) -> QueryIter<'_, 's, D, F> ⓘ
Returns an Iterator
over the query items.
This iterator is always guaranteed to return results from each matching entity once and only once. Iteration order is not guaranteed.
§Example
Here, the gravity_system
updates the Velocity
component of every entity that contains it:
fn gravity_system(mut query: Query<&mut Velocity>) {
const DELTA: f32 = 1.0 / 60.0;
for mut velocity in &mut query {
velocity.y -= 9.8 * DELTA;
}
}
§See also
iter
for read-only query items.
Sourcepub fn iter_combinations<const K: usize>(
&self,
) -> QueryCombinationIter<'_, 's, D::ReadOnly, F, K> ⓘ
pub fn iter_combinations<const K: usize>( &self, ) -> QueryCombinationIter<'_, 's, D::ReadOnly, F, K> ⓘ
Returns a QueryCombinationIter
over all combinations of K
read-only query items without repetition.
This iterator is always guaranteed to return results from each unique pair of matching entities. Iteration order is not guaranteed.
§Example
fn some_system(query: Query<&ComponentA>) {
for [a1, a2] in query.iter_combinations() {
// ...
}
}
§See also
iter_combinations_mut
for mutable query item combinations.iter_combinations_inner
for mutable query item combinations with the full'world
lifetime.
Sourcepub fn iter_combinations_mut<const K: usize>(
&mut self,
) -> QueryCombinationIter<'_, 's, D, F, K> ⓘ
pub fn iter_combinations_mut<const K: usize>( &mut self, ) -> QueryCombinationIter<'_, 's, D, F, K> ⓘ
Returns a QueryCombinationIter
over all combinations of K
query items without repetition.
This iterator is always guaranteed to return results from each unique pair of matching entities. Iteration order is not guaranteed.
§Example
fn some_system(mut query: Query<&mut ComponentA>) {
let mut combinations = query.iter_combinations_mut();
while let Some([mut a1, mut a2]) = combinations.fetch_next() {
// mutably access components data
}
}
§See also
iter_combinations
for read-only query item combinations.iter_combinations_inner
for mutable query item combinations with the full'world
lifetime.
Sourcepub fn iter_combinations_inner<const K: usize>(
self,
) -> QueryCombinationIter<'w, 's, D, F, K> ⓘ
pub fn iter_combinations_inner<const K: usize>( self, ) -> QueryCombinationIter<'w, 's, D, F, K> ⓘ
Returns a QueryCombinationIter
over all combinations of K
query items without repetition.
This consumes the Query
to return results with the actual “inner” world lifetime.
This iterator is always guaranteed to return results from each unique pair of matching entities. Iteration order is not guaranteed.
§Example
fn some_system(query: Query<&mut ComponentA>) {
let mut combinations = query.iter_combinations_inner();
while let Some([mut a1, mut a2]) = combinations.fetch_next() {
// mutably access components data
}
}
§See also
iter_combinations
for read-only query item combinations.iter_combinations_mut
for mutable query item combinations.
Sourcepub fn iter_many<EntityList: IntoIterator<Item: EntityEquivalent>>(
&self,
entities: EntityList,
) -> QueryManyIter<'_, 's, D::ReadOnly, F, EntityList::IntoIter> ⓘ
pub fn iter_many<EntityList: IntoIterator<Item: EntityEquivalent>>( &self, entities: EntityList, ) -> QueryManyIter<'_, 's, D::ReadOnly, F, EntityList::IntoIter> ⓘ
Returns an Iterator
over the read-only query items generated from an Entity
list.
Items are returned in the order of the list of entities, and may not be unique if the input doesn’t guarantee uniqueness. Entities that don’t match the query are skipped.
§Example
// A component containing an entity list.
#[derive(Component)]
struct Friends {
list: Vec<Entity>,
}
fn system(
friends_query: Query<&Friends>,
counter_query: Query<&Counter>,
) {
for friends in &friends_query {
for counter in counter_query.iter_many(&friends.list) {
println!("Friend's counter: {}", counter.value);
}
}
}
§See also
iter_many_mut
to get mutable query items.iter_many_inner
to get mutable query items with the full'world
lifetime.
Sourcepub fn iter_many_mut<EntityList: IntoIterator<Item: EntityEquivalent>>(
&mut self,
entities: EntityList,
) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
pub fn iter_many_mut<EntityList: IntoIterator<Item: EntityEquivalent>>( &mut self, entities: EntityList, ) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
Returns an iterator over the query items generated from an Entity
list.
Items are returned in the order of the list of entities, and may not be unique if the input doesn’t guarantee uniqueness. Entities that don’t match the query are skipped.
§Examples
#[derive(Component)]
struct Counter {
value: i32
}
#[derive(Component)]
struct Friends {
list: Vec<Entity>,
}
fn system(
friends_query: Query<&Friends>,
mut counter_query: Query<&mut Counter>,
) {
for friends in &friends_query {
let mut iter = counter_query.iter_many_mut(&friends.list);
while let Some(mut counter) = iter.fetch_next() {
println!("Friend's counter: {}", counter.value);
counter.value += 1;
}
}
}
§See also
iter_many
to get read-only query items.iter_many_inner
to get mutable query items with the full'world
lifetime.
Sourcepub fn iter_many_inner<EntityList: IntoIterator<Item: EntityEquivalent>>(
self,
entities: EntityList,
) -> QueryManyIter<'w, 's, D, F, EntityList::IntoIter> ⓘ
pub fn iter_many_inner<EntityList: IntoIterator<Item: EntityEquivalent>>( self, entities: EntityList, ) -> QueryManyIter<'w, 's, D, F, EntityList::IntoIter> ⓘ
Returns an iterator over the query items generated from an Entity
list.
This consumes the Query
to return results with the actual “inner” world lifetime.
Items are returned in the order of the list of entities, and may not be unique if the input doesn’t guarantee uniqueness. Entities that don’t match the query are skipped.
§See also
iter_many
to get read-only query items.iter_many_mut
to get mutable query items.
Sourcepub fn iter_many_unique<EntityList: EntitySet>(
&self,
entities: EntityList,
) -> QueryManyUniqueIter<'_, 's, D::ReadOnly, F, EntityList::IntoIter> ⓘ
pub fn iter_many_unique<EntityList: EntitySet>( &self, entities: EntityList, ) -> QueryManyUniqueIter<'_, 's, D::ReadOnly, F, EntityList::IntoIter> ⓘ
Returns an Iterator
over the unique read-only query items generated from an EntitySet
.
Items are returned in the order of the list of entities. Entities that don’t match the query are skipped.
§Example
// `Friends` ensures that it only lists unique entities.
#[derive(Component)]
struct Friends {
unique_list: Vec<Entity>,
}
impl<'a> IntoIterator for &'a Friends {
type Item = &'a Entity;
type IntoIter = UniqueEntityIter<slice::Iter<'a, Entity>>;
fn into_iter(self) -> Self::IntoIter {
// SAFETY: `Friends` ensures that it unique_list contains only unique entities.
unsafe { UniqueEntityIter::from_iterator_unchecked(self.unique_list.iter()) }
}
}
fn system(
friends_query: Query<&Friends>,
counter_query: Query<&Counter>,
) {
for friends in &friends_query {
for counter in counter_query.iter_many_unique(friends) {
println!("Friend's counter: {:?}", counter.value);
}
}
}
§See also
iter_many_unique_mut
to get mutable query items.iter_many_unique_inner
to get with the actual “inner” world lifetime.
Sourcepub fn iter_many_unique_mut<EntityList: EntitySet>(
&mut self,
entities: EntityList,
) -> QueryManyUniqueIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
pub fn iter_many_unique_mut<EntityList: EntitySet>( &mut self, entities: EntityList, ) -> QueryManyUniqueIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
Returns an iterator over the unique query items generated from an EntitySet
.
Items are returned in the order of the list of entities. Entities that don’t match the query are skipped.
§Examples
#[derive(Component)]
struct Counter {
value: i32
}
// `Friends` ensures that it only lists unique entities.
#[derive(Component)]
struct Friends {
unique_list: Vec<Entity>,
}
impl<'a> IntoIterator for &'a Friends {
type Item = &'a Entity;
type IntoIter = UniqueEntityIter<slice::Iter<'a, Entity>>;
fn into_iter(self) -> Self::IntoIter {
// SAFETY: `Friends` ensures that it unique_list contains only unique entities.
unsafe { UniqueEntityIter::from_iterator_unchecked(self.unique_list.iter()) }
}
}
fn system(
friends_query: Query<&Friends>,
mut counter_query: Query<&mut Counter>,
) {
for friends in &friends_query {
for mut counter in counter_query.iter_many_unique_mut(friends) {
println!("Friend's counter: {:?}", counter.value);
counter.value += 1;
}
}
}
§See also
iter_many_unique
to get read-only query items.iter_many_unique_inner
to get with the actual “inner” world lifetime.
Sourcepub fn iter_many_unique_inner<EntityList: EntitySet>(
self,
entities: EntityList,
) -> QueryManyUniqueIter<'w, 's, D, F, EntityList::IntoIter> ⓘ
pub fn iter_many_unique_inner<EntityList: EntitySet>( self, entities: EntityList, ) -> QueryManyUniqueIter<'w, 's, D, F, EntityList::IntoIter> ⓘ
Returns an iterator over the unique query items generated from an EntitySet
.
This consumes the Query
to return results with the actual “inner” world lifetime.
Items are returned in the order of the list of entities. Entities that don’t match the query are skipped.
§Examples
#[derive(Component)]
struct Counter {
value: i32
}
// `Friends` ensures that it only lists unique entities.
#[derive(Component)]
struct Friends {
unique_list: Vec<Entity>,
}
impl<'a> IntoIterator for &'a Friends {
type Item = &'a Entity;
type IntoIter = UniqueEntityIter<slice::Iter<'a, Entity>>;
fn into_iter(self) -> Self::IntoIter {
// SAFETY: `Friends` ensures that it unique_list contains only unique entities.
unsafe { UniqueEntityIter::from_iterator_unchecked(self.unique_list.iter()) }
}
}
fn system(
friends_query: Query<&Friends>,
mut counter_query: Query<&mut Counter>,
) {
let friends = friends_query.single().unwrap();
for mut counter in counter_query.iter_many_unique_inner(friends) {
println!("Friend's counter: {:?}", counter.value);
counter.value += 1;
}
}
§See also
iter_many_unique
to get read-only query items.iter_many_unique_mut
to get mutable query items.
Sourcepub unsafe fn iter_unsafe(&self) -> QueryIter<'_, 's, D, F> ⓘ
pub unsafe fn iter_unsafe(&self) -> QueryIter<'_, 's, D, F> ⓘ
Returns an Iterator
over the query items.
This iterator is always guaranteed to return results from each matching entity once and only once. Iteration order is not guaranteed.
§Safety
This function makes it possible to violate Rust’s aliasing guarantees. You must make sure this call does not result in multiple mutable references to the same component.
§See also
Sourcepub unsafe fn iter_combinations_unsafe<const K: usize>(
&self,
) -> QueryCombinationIter<'_, 's, D, F, K> ⓘ
pub unsafe fn iter_combinations_unsafe<const K: usize>( &self, ) -> QueryCombinationIter<'_, 's, D, F, K> ⓘ
Iterates over all possible combinations of K
query items without repetition.
This iterator is always guaranteed to return results from each unique pair of matching entities. Iteration order is not guaranteed.
§Safety
This allows aliased mutability. You must make sure this call does not result in multiple mutable references to the same component.
§See also
iter_combinations
anditer_combinations_mut
for the safe versions.
Sourcepub unsafe fn iter_many_unsafe<EntityList: IntoIterator<Item: EntityEquivalent>>(
&self,
entities: EntityList,
) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
pub unsafe fn iter_many_unsafe<EntityList: IntoIterator<Item: EntityEquivalent>>( &self, entities: EntityList, ) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
Returns an Iterator
over the query items generated from an Entity
list.
Items are returned in the order of the list of entities, and may not be unique if the input doesnn’t guarantee uniqueness. Entities that don’t match the query are skipped.
§Safety
This allows aliased mutability and does not check for entity uniqueness.
You must make sure this call does not result in multiple mutable references to the same component.
Particular care must be taken when collecting the data (rather than iterating over it one item at a time) such as via Iterator::collect
.
§See also
iter_many_mut
to safely access the query items.
Sourcepub unsafe fn iter_many_unique_unsafe<EntityList: EntitySet>(
&self,
entities: EntityList,
) -> QueryManyUniqueIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
pub unsafe fn iter_many_unique_unsafe<EntityList: EntitySet>( &self, entities: EntityList, ) -> QueryManyUniqueIter<'_, 's, D, F, EntityList::IntoIter> ⓘ
Returns an Iterator
over the unique query items generated from an Entity
list.
Items are returned in the order of the list of entities. Entities that don’t match the query are skipped.
§Safety
This allows aliased mutability. You must make sure this call does not result in multiple mutable references to the same component.
§See also
iter_many_unique
to get read-only query items.iter_many_unique_mut
to get mutable query items.iter_many_unique_inner
to get with the actual “inner” world lifetime.
Sourcepub fn par_iter(&self) -> QueryParIter<'_, '_, D::ReadOnly, F>
pub fn par_iter(&self) -> QueryParIter<'_, '_, D::ReadOnly, F>
Returns a parallel iterator over the query results for the given World
.
This parallel iterator is always guaranteed to return results from each matching entity once and only once. Iteration order and thread assignment is not guaranteed.
If the multithreaded
feature is disabled, iterating with this operates identically to Iterator::for_each
on QueryIter
.
This can only be called for read-only queries, see par_iter_mut
for write-queries.
Note that you must use the for_each
method to iterate over the
results, see par_iter_mut
for an example.
Sourcepub fn par_iter_mut(&mut self) -> QueryParIter<'_, '_, D, F>
pub fn par_iter_mut(&mut self) -> QueryParIter<'_, '_, D, F>
Returns a parallel iterator over the query results for the given World
.
This parallel iterator is always guaranteed to return results from each matching entity once and only once. Iteration order and thread assignment is not guaranteed.
If the multithreaded
feature is disabled, iterating with this operates identically to Iterator::for_each
on QueryIter
.
This can only be called for mutable queries, see par_iter
for read-only-queries.
§Example
Here, the gravity_system
updates the Velocity
component of every entity that contains it:
fn gravity_system(mut query: Query<&mut Velocity>) {
const DELTA: f32 = 1.0 / 60.0;
query.par_iter_mut().for_each(|mut velocity| {
velocity.y -= 9.8 * DELTA;
});
}
Sourcepub fn par_iter_inner(self) -> QueryParIter<'w, 's, D, F>
pub fn par_iter_inner(self) -> QueryParIter<'w, 's, D, F>
Returns a parallel iterator over the query results for the given World
.
This consumes the Query
to return results with the actual “inner” world lifetime.
This parallel iterator is always guaranteed to return results from each matching entity once and only once. Iteration order and thread assignment is not guaranteed.
If the multithreaded
feature is disabled, iterating with this operates identically to Iterator::for_each
on QueryIter
.
§Example
Here, the gravity_system
updates the Velocity
component of every entity that contains it:
fn gravity_system(query: Query<&mut Velocity>) {
const DELTA: f32 = 1.0 / 60.0;
query.par_iter_inner().for_each(|mut velocity| {
velocity.y -= 9.8 * DELTA;
});
}
Sourcepub fn par_iter_many<EntityList: IntoIterator<Item: EntityEquivalent>>(
&self,
entities: EntityList,
) -> QueryParManyIter<'_, '_, D::ReadOnly, F, EntityList::Item>
pub fn par_iter_many<EntityList: IntoIterator<Item: EntityEquivalent>>( &self, entities: EntityList, ) -> QueryParManyIter<'_, '_, D::ReadOnly, F, EntityList::Item>
Returns a parallel iterator over the read-only query items generated from an Entity
list.
Entities that don’t match the query are skipped. Iteration order and thread assignment is not guaranteed.
If the multithreaded
feature is disabled, iterating with this operates identically to Iterator::for_each
on QueryManyIter
.
This can only be called for read-only queries. To avoid potential aliasing, there is no par_iter_many_mut
equivalent.
See par_iter_many_unique_mut
for an alternative using EntitySet
.
Note that you must use the for_each
method to iterate over the
results, see par_iter_mut
for an example.
Sourcepub fn par_iter_many_unique<EntityList: EntitySet<Item: Sync>>(
&self,
entities: EntityList,
) -> QueryParManyUniqueIter<'_, '_, D::ReadOnly, F, EntityList::Item>
pub fn par_iter_many_unique<EntityList: EntitySet<Item: Sync>>( &self, entities: EntityList, ) -> QueryParManyUniqueIter<'_, '_, D::ReadOnly, F, EntityList::Item>
Returns a parallel iterator over the unique read-only query items generated from an EntitySet
.
Entities that don’t match the query are skipped. Iteration order and thread assignment is not guaranteed.
If the multithreaded
feature is disabled, iterating with this operates identically to Iterator::for_each
on QueryManyUniqueIter
.
This can only be called for read-only queries, see par_iter_many_unique_mut
for write-queries.
Note that you must use the for_each
method to iterate over the
results, see par_iter_mut
for an example.
Sourcepub fn par_iter_many_unique_mut<EntityList: EntitySet<Item: Sync>>(
&mut self,
entities: EntityList,
) -> QueryParManyUniqueIter<'_, '_, D, F, EntityList::Item>
pub fn par_iter_many_unique_mut<EntityList: EntitySet<Item: Sync>>( &mut self, entities: EntityList, ) -> QueryParManyUniqueIter<'_, '_, D, F, EntityList::Item>
Returns a parallel iterator over the unique query items generated from an EntitySet
.
Entities that don’t match the query are skipped. Iteration order and thread assignment is not guaranteed.
If the multithreaded
feature is disabled, iterating with this operates identically to Iterator::for_each
on QueryManyUniqueIter
.
This can only be called for mutable queries, see par_iter_many_unique
for read-only-queries.
Note that you must use the for_each
method to iterate over the
results, see par_iter_mut
for an example.
Sourcepub fn get(
&self,
entity: Entity,
) -> Result<ROQueryItem<'_, D>, QueryEntityError>
pub fn get( &self, entity: Entity, ) -> Result<ROQueryItem<'_, D>, QueryEntityError>
Returns the read-only query item for the given Entity
.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
This is always guaranteed to run in O(1)
time.
§Example
Here, get
is used to retrieve the exact query item of the entity specified by the SelectedCharacter
resource.
fn print_selected_character_name_system(
query: Query<&Character>,
selection: Res<SelectedCharacter>
)
{
if let Ok(selected_character) = query.get(selection.entity) {
println!("{}", selected_character.name);
}
}
§See also
get_mut
to get a mutable query item.
Sourcepub fn get_many<const N: usize>(
&self,
entities: [Entity; N],
) -> Result<[ROQueryItem<'_, D>; N], QueryEntityError>
pub fn get_many<const N: usize>( &self, entities: [Entity; N], ) -> Result<[ROQueryItem<'_, D>; N], QueryEntityError>
Returns the read-only query items for the given array of Entity
.
The returned query items are in the same order as the input.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
The elements of the array do not need to be unique, unlike get_many_mut
.
§Examples
use bevy_ecs::prelude::*;
use bevy_ecs::query::QueryEntityError;
#[derive(Component, PartialEq, Debug)]
struct A(usize);
let mut world = World::new();
let entity_vec: Vec<Entity> = (0..3).map(|i| world.spawn(A(i)).id()).collect();
let entities: [Entity; 3] = entity_vec.try_into().unwrap();
world.spawn(A(73));
let mut query_state = world.query::<&A>();
let query = query_state.query(&world);
let component_values = query.get_many(entities).unwrap();
assert_eq!(component_values, [&A(0), &A(1), &A(2)]);
let wrong_entity = Entity::from_raw(365);
assert_eq!(
match query.get_many([wrong_entity]).unwrap_err() {
QueryEntityError::EntityDoesNotExist(error) => error.entity,
_ => panic!(),
},
wrong_entity
);
§See also
get_many_mut
to get mutable query items.get_many_unique
to only handle unique inputs.many
for the panicking version.
Sourcepub fn get_many_unique<const N: usize>(
&self,
entities: UniqueEntityArray<N>,
) -> Result<[ROQueryItem<'_, D>; N], QueryEntityError>
pub fn get_many_unique<const N: usize>( &self, entities: UniqueEntityArray<N>, ) -> Result<[ROQueryItem<'_, D>; N], QueryEntityError>
Returns the read-only query items for the given UniqueEntityArray
.
The returned query items are in the same order as the input.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
§Examples
use bevy_ecs::{prelude::*, query::QueryEntityError, entity::{EntitySetIterator, UniqueEntityArray, UniqueEntityVec}};
#[derive(Component, PartialEq, Debug)]
struct A(usize);
let mut world = World::new();
let entity_set: UniqueEntityVec = world.spawn_batch((0..3).map(A)).collect_set();
let entity_set: UniqueEntityArray<3> = entity_set.try_into().unwrap();
world.spawn(A(73));
let mut query_state = world.query::<&A>();
let query = query_state.query(&world);
let component_values = query.get_many_unique(entity_set).unwrap();
assert_eq!(component_values, [&A(0), &A(1), &A(2)]);
let wrong_entity = Entity::from_raw(365);
assert_eq!(
match query.get_many_unique(UniqueEntityArray::from([wrong_entity])).unwrap_err() {
QueryEntityError::EntityDoesNotExist(error) => error.entity,
_ => panic!(),
},
wrong_entity
);
§See also
get_many_unique_mut
to get mutable query items.get_many
to handle inputs with duplicates.
Sourcepub fn many<const N: usize>(
&self,
entities: [Entity; N],
) -> [ROQueryItem<'_, D>; N]
👎Deprecated since 0.16.0: Use get_many
instead and handle the Result.
pub fn many<const N: usize>( &self, entities: [Entity; N], ) -> [ROQueryItem<'_, D>; N]
get_many
instead and handle the Result.Returns the read-only query items for the given array of Entity
.
§Panics
This method panics if there is a query mismatch or a non-existing entity.
§Examples
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Targets([Entity; 3]);
#[derive(Component)]
struct Position{
x: i8,
y: i8
};
impl Position {
fn distance(&self, other: &Position) -> i8 {
// Manhattan distance is way easier to compute!
(self.x - other.x).abs() + (self.y - other.y).abs()
}
}
fn check_all_targets_in_range(targeting_query: Query<(Entity, &Targets, &Position)>, targets_query: Query<&Position>){
for (targeting_entity, targets, origin) in &targeting_query {
// We can use "destructuring" to unpack the results nicely
let [target_1, target_2, target_3] = targets_query.many(targets.0);
assert!(target_1.distance(origin) <= 5);
assert!(target_2.distance(origin) <= 5);
assert!(target_3.distance(origin) <= 5);
}
}
§See also
get_many
for the non-panicking version.
Sourcepub fn get_mut(
&mut self,
entity: Entity,
) -> Result<D::Item<'_>, QueryEntityError>
pub fn get_mut( &mut self, entity: Entity, ) -> Result<D::Item<'_>, QueryEntityError>
Returns the query item for the given Entity
.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
This is always guaranteed to run in O(1)
time.
§Example
Here, get_mut
is used to retrieve the exact query item of the entity specified by the PoisonedCharacter
resource.
fn poison_system(mut query: Query<&mut Health>, poisoned: Res<PoisonedCharacter>) {
if let Ok(mut health) = query.get_mut(poisoned.character_id) {
health.0 -= 1;
}
}
§See also
get
to get a read-only query item.
Sourcepub fn get_inner(self, entity: Entity) -> Result<D::Item<'w>, QueryEntityError>
pub fn get_inner(self, entity: Entity) -> Result<D::Item<'w>, QueryEntityError>
Returns the query item for the given Entity
.
This consumes the Query
to return results with the actual “inner” world lifetime.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
This is always guaranteed to run in O(1)
time.
§See also
Sourcepub fn get_many_mut<const N: usize>(
&mut self,
entities: [Entity; N],
) -> Result<[D::Item<'_>; N], QueryEntityError>
pub fn get_many_mut<const N: usize>( &mut self, entities: [Entity; N], ) -> Result<[D::Item<'_>; N], QueryEntityError>
Returns the query items for the given array of Entity
.
The returned query items are in the same order as the input.
In case of a nonexisting entity, duplicate entities or mismatched component, a QueryEntityError
is returned instead.
§Examples
use bevy_ecs::prelude::*;
use bevy_ecs::query::QueryEntityError;
#[derive(Component, PartialEq, Debug)]
struct A(usize);
let mut world = World::new();
let entities: Vec<Entity> = (0..3).map(|i| world.spawn(A(i)).id()).collect();
let entities: [Entity; 3] = entities.try_into().unwrap();
world.spawn(A(73));
let wrong_entity = Entity::from_raw(57);
let invalid_entity = world.spawn_empty().id();
let mut query_state = world.query::<&mut A>();
let mut query = query_state.query_mut(&mut world);
let mut mutable_component_values = query.get_many_mut(entities).unwrap();
for mut a in &mut mutable_component_values {
a.0 += 5;
}
let component_values = query.get_many(entities).unwrap();
assert_eq!(component_values, [&A(5), &A(6), &A(7)]);
assert_eq!(
match query
.get_many_mut([wrong_entity])
.unwrap_err()
{
QueryEntityError::EntityDoesNotExist(error) => error.entity,
_ => panic!(),
},
wrong_entity
);
assert_eq!(
match query
.get_many_mut([invalid_entity])
.unwrap_err()
{
QueryEntityError::QueryDoesNotMatch(entity, _) => entity,
_ => panic!(),
},
invalid_entity
);
assert_eq!(
query
.get_many_mut([entities[0], entities[0]])
.unwrap_err(),
QueryEntityError::AliasedMutability(entities[0])
);
§See also
Sourcepub fn get_many_unique_mut<const N: usize>(
&mut self,
entities: UniqueEntityArray<N>,
) -> Result<[D::Item<'_>; N], QueryEntityError>
pub fn get_many_unique_mut<const N: usize>( &mut self, entities: UniqueEntityArray<N>, ) -> Result<[D::Item<'_>; N], QueryEntityError>
Returns the query items for the given UniqueEntityArray
.
The returned query items are in the same order as the input.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
§Examples
use bevy_ecs::{prelude::*, query::QueryEntityError, entity::{EntitySetIterator, UniqueEntityArray, UniqueEntityVec}};
#[derive(Component, PartialEq, Debug)]
struct A(usize);
let mut world = World::new();
let entity_set: UniqueEntityVec = world.spawn_batch((0..3).map(A)).collect_set();
let entity_set: UniqueEntityArray<3> = entity_set.try_into().unwrap();
world.spawn(A(73));
let wrong_entity = Entity::from_raw(57);
let invalid_entity = world.spawn_empty().id();
let mut query_state = world.query::<&mut A>();
let mut query = query_state.query_mut(&mut world);
let mut mutable_component_values = query.get_many_unique_mut(entity_set).unwrap();
for mut a in &mut mutable_component_values {
a.0 += 5;
}
let component_values = query.get_many_unique(entity_set).unwrap();
assert_eq!(component_values, [&A(5), &A(6), &A(7)]);
assert_eq!(
match query
.get_many_unique_mut(UniqueEntityArray::from([wrong_entity]))
.unwrap_err()
{
QueryEntityError::EntityDoesNotExist(error) => error.entity,
_ => panic!(),
},
wrong_entity
);
assert_eq!(
match query
.get_many_unique_mut(UniqueEntityArray::from([invalid_entity]))
.unwrap_err()
{
QueryEntityError::QueryDoesNotMatch(entity, _) => entity,
_ => panic!(),
},
invalid_entity
);
§See also
get_many_unique
to get read-only query items.
Sourcepub fn get_many_mut_inner<const N: usize>(
self,
entities: [Entity; N],
) -> Result<[D::Item<'w>; N], QueryEntityError>
pub fn get_many_mut_inner<const N: usize>( self, entities: [Entity; N], ) -> Result<[D::Item<'w>; N], QueryEntityError>
Returns the query items for the given array of Entity
.
This consumes the Query
to return results with the actual “inner” world lifetime.
The returned query items are in the same order as the input.
In case of a nonexisting entity, duplicate entities or mismatched component, a QueryEntityError
is returned instead.
§See also
get_many
to get read-only query items without checking for duplicate entities.get_many_mut
to get items using a mutable reference.get_many_inner
to get read-only query items with the actual “inner” world lifetime.
Sourcepub fn get_many_inner<const N: usize>(
self,
entities: [Entity; N],
) -> Result<[D::Item<'w>; N], QueryEntityError>where
D: ReadOnlyQueryData,
pub fn get_many_inner<const N: usize>(
self,
entities: [Entity; N],
) -> Result<[D::Item<'w>; N], QueryEntityError>where
D: ReadOnlyQueryData,
Returns the query items for the given array of Entity
.
This consumes the Query
to return results with the actual “inner” world lifetime.
The returned query items are in the same order as the input.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
§See also
get_many
to get read-only query items without checking for duplicate entities.get_many_mut
to get items using a mutable reference.get_many_mut_inner
to get mutable query items with the actual “inner” world lifetime.
Sourcepub fn get_many_unique_inner<const N: usize>(
self,
entities: UniqueEntityArray<N>,
) -> Result<[D::Item<'w>; N], QueryEntityError>
pub fn get_many_unique_inner<const N: usize>( self, entities: UniqueEntityArray<N>, ) -> Result<[D::Item<'w>; N], QueryEntityError>
Returns the query items for the given UniqueEntityArray
.
This consumes the Query
to return results with the actual “inner” world lifetime.
The returned query items are in the same order as the input.
In case of a nonexisting entity, duplicate entities or mismatched component, a QueryEntityError
is returned instead.
§See also
get_many_unique
to get read-only query items without checking for duplicate entities.get_many_unique_mut
to get items using a mutable reference.
Sourcepub fn many_mut<const N: usize>(
&mut self,
entities: [Entity; N],
) -> [D::Item<'_>; N]
👎Deprecated since 0.16.0: Use get_many_mut
instead and handle the Result.
pub fn many_mut<const N: usize>( &mut self, entities: [Entity; N], ) -> [D::Item<'_>; N]
get_many_mut
instead and handle the Result.Returns the query items for the given array of Entity
.
§Panics
This method panics if there is a query mismatch, a non-existing entity, or the same Entity
is included more than once in the array.
§Examples
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Spring{
connected_entities: [Entity; 2],
strength: f32,
}
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
#[derive(Component)]
struct Force {
x: f32,
y: f32,
}
fn spring_forces(spring_query: Query<&Spring>, mut mass_query: Query<(&Position, &mut Force)>){
for spring in &spring_query {
// We can use "destructuring" to unpack our query items nicely
let [(position_1, mut force_1), (position_2, mut force_2)] = mass_query.many_mut(spring.connected_entities);
force_1.x += spring.strength * (position_1.x - position_2.x);
force_1.y += spring.strength * (position_1.y - position_2.y);
// Silence borrow-checker: I have split your mutable borrow!
force_2.x += spring.strength * (position_2.x - position_1.x);
force_2.y += spring.strength * (position_2.y - position_1.y);
}
}
§See also
get_many_mut
for the non panicking version.many
to get read-only query items.
Sourcepub unsafe fn get_unchecked(
&self,
entity: Entity,
) -> Result<D::Item<'_>, QueryEntityError>
pub unsafe fn get_unchecked( &self, entity: Entity, ) -> Result<D::Item<'_>, QueryEntityError>
Returns the query item for the given Entity
.
In case of a nonexisting entity or mismatched component, a QueryEntityError
is returned instead.
This is always guaranteed to run in O(1)
time.
§Safety
This function makes it possible to violate Rust’s aliasing guarantees. You must make sure this call does not result in multiple mutable references to the same component.
§See also
get_mut
for the safe version.
Sourcepub fn single(&self) -> Result<ROQueryItem<'_, D>, QuerySingleError>
pub fn single(&self) -> Result<ROQueryItem<'_, D>, QuerySingleError>
Returns a single read-only query item when there is exactly one entity matching the query.
If the number of query items is not exactly one, a QuerySingleError
is returned instead.
§Example
fn player_scoring_system(query: Query<&PlayerScore>) {
match query.single() {
Ok(PlayerScore(score)) => {
println!("Score: {}", score);
}
Err(QuerySingleError::NoEntities(_)) => {
println!("Error: There is no player!");
}
Err(QuerySingleError::MultipleEntities(_)) => {
println!("Error: There is more than one player!");
}
}
}
§See also
single_mut
to get the mutable query item.
Sourcepub fn get_single(&self) -> Result<ROQueryItem<'_, D>, QuerySingleError>
👎Deprecated since 0.16.0: Please use single
instead
pub fn get_single(&self) -> Result<ROQueryItem<'_, D>, QuerySingleError>
single
insteadA deprecated alias for single
.
Sourcepub fn single_mut(&mut self) -> Result<D::Item<'_>, QuerySingleError>
pub fn single_mut(&mut self) -> Result<D::Item<'_>, QuerySingleError>
Returns a single query item when there is exactly one entity matching the query.
If the number of query items is not exactly one, a QuerySingleError
is returned instead.
§Example
fn regenerate_player_health_system(mut query: Query<&mut Health, With<Player>>) {
let mut health = query.single_mut().expect("Error: Could not find a single player.");
health.0 += 1;
}
§See also
single
to get the read-only query item.
Sourcepub fn get_single_mut(&mut self) -> Result<D::Item<'_>, QuerySingleError>
👎Deprecated since 0.16.0: Please use single_mut
instead
pub fn get_single_mut(&mut self) -> Result<D::Item<'_>, QuerySingleError>
single_mut
insteadA deprecated alias for single_mut
.
Sourcepub fn single_inner(self) -> Result<D::Item<'w>, QuerySingleError>
pub fn single_inner(self) -> Result<D::Item<'w>, QuerySingleError>
Returns a single query item when there is exactly one entity matching the query.
This consumes the Query
to return results with the actual “inner” world lifetime.
If the number of query items is not exactly one, a QuerySingleError
is returned instead.
§Example
fn regenerate_player_health_system(query: Query<&mut Health, With<Player>>) {
let mut health = query.single_inner().expect("Error: Could not find a single player.");
health.0 += 1;
}
§See also
single
to get the read-only query item.single_mut
to get the mutable query item.single_inner
for the panicking version.
Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if there are no query items.
This is equivalent to self.iter().next().is_none()
, and thus the worst case runtime will be O(n)
where n
is the number of potential matches. This can be notably expensive for queries that rely
on non-archetypal filters such as Added
or Changed
which must individually check each query
result for a match.
§Example
Here, the score is increased only if an entity with a Player
component is present in the world:
fn update_score_system(query: Query<(), With<Player>>, mut score: ResMut<Score>) {
if !query.is_empty() {
score.0 += 1;
}
}
Sourcepub fn transmute_lens<NewD: QueryData>(&mut self) -> QueryLens<'_, NewD>
pub fn transmute_lens<NewD: QueryData>(&mut self) -> QueryLens<'_, NewD>
Returns a QueryLens
that can be used to get a query with a more general fetch.
For example, this can transform a Query<(&A, &mut B)>
to a Query<&B>
.
This can be useful for passing the query to another function. Note that since
filter terms are dropped, non-archetypal filters like Added
and
Changed
will not be respected. To maintain or change filter
terms see Self::transmute_lens_filtered
§Panics
This will panic if NewD
is not a subset of the original fetch D
§Example
fn reusable_function(lens: &mut QueryLens<&A>) {
assert_eq!(lens.query().single().unwrap().0, 10);
}
// We can use the function in a system that takes the exact query.
fn system_1(mut query: Query<&A>) {
reusable_function(&mut query.as_query_lens());
}
// We can also use it with a query that does not match exactly
// by transmuting it.
fn system_2(mut query: Query<(&mut A, &B)>) {
let mut lens = query.transmute_lens::<&A>();
reusable_function(&mut lens);
}
§Allowed Transmutes
Besides removing parameters from the query, you can also make limited changes to the types of parameters. The new query must have a subset of the read, write, and required access of the original query.
&mut T
andMut<T>
have read, write, and required access toT
&T
andRef<T>
have read and required access toT
Option<D>
andAnyOf<(D, ...)>
have the read and write access of the subqueries, but no required access- Tuples of query data and
#[derive(QueryData)]
structs have the union of the access of their subqueries EntityMut
has read and write access to all components, but no required accessEntityRef
has read access to all components, but no required accessEntity
,EntityLocation
,&Archetype
,Has<T>
, andPhantomData<T>
have no access at all, so can be added to any queryFilteredEntityRef
andFilteredEntityMut
have access determined by theQueryBuilder
used to construct them. Any query can be transmuted to them, and they will receive the access of the source query, but only if they are the top-level query and not nestedAdded<T>
andChanged<T>
filters have read and required access toT
With<T>
andWithout<T>
filters have no access at all, so can be added to any query- Tuples of query filters and
#[derive(QueryFilter)]
structs have the union of the access of their subqueries Or<(F, ...)>
filters have the read access of the subqueries, but no required access
§Examples of valid transmutes
// `&mut T` and `Mut<T>` access the same data and can be transmuted to each other,
// `&T` and `Ref<T>` access the same data and can be transmuted to each other,
// and mutable versions can be transmuted to read-only versions
assert_valid_transmute::<&mut T, &T>();
assert_valid_transmute::<&mut T, Mut<T>>();
assert_valid_transmute::<Mut<T>, &mut T>();
assert_valid_transmute::<&T, Ref<T>>();
assert_valid_transmute::<Ref<T>, &T>();
// The structure can be rearranged, or subqueries dropped
assert_valid_transmute::<(&T, &U), &T>();
assert_valid_transmute::<((&T, &U), &V), (&T, (&U, &V))>();
assert_valid_transmute::<Option<(&T, &U)>, (Option<&T>, Option<&U>)>();
// Queries with no access can be freely added
assert_valid_transmute::<
&T,
(&T, Entity, EntityLocation, &Archetype, Has<U>, PhantomData<T>),
>();
// Required access can be transmuted to optional,
// and optional access can be transmuted to other optional access
assert_valid_transmute::<&T, Option<&T>>();
assert_valid_transmute::<AnyOf<(&mut T, &mut U)>, Option<&T>>();
// Note that removing subqueries from `AnyOf` will result
// in an `AnyOf` where all subqueries can yield `None`!
assert_valid_transmute::<AnyOf<(&T, &U, &V)>, AnyOf<(&T, &U)>>();
assert_valid_transmute::<EntityMut, Option<&mut T>>();
// Anything can be transmuted to `FilteredEntityRef` or `FilteredEntityMut`
// This will create a `FilteredEntityMut` that only has read access to `T`
assert_valid_transmute::<&T, FilteredEntityMut>();
// This transmute will succeed, but the `FilteredEntityMut` will have no access!
// It must be the top-level query to be given access, but here it is nested in a tuple.
assert_valid_transmute::<&T, (Entity, FilteredEntityMut)>();
// `Added<T>` and `Changed<T>` filters have the same access as `&T` data
// Remember that they are only evaluated on the transmuted query, not the original query!
assert_valid_transmute_filtered::<Entity, Changed<T>, &T, ()>();
assert_valid_transmute_filtered::<&mut T, (), &T, Added<T>>();
// Nested inside of an `Or` filter, they have the same access as `Option<&T>`.
assert_valid_transmute_filtered::<Option<&T>, (), Entity, Or<(Changed<T>, With<U>)>>();
Sourcepub fn transmute_lens_inner<NewD: QueryData>(self) -> QueryLens<'w, NewD>
pub fn transmute_lens_inner<NewD: QueryData>(self) -> QueryLens<'w, NewD>
Returns a QueryLens
that can be used to get a query with a more general fetch.
This consumes the Query
to return results with the actual “inner” world lifetime.
For example, this can transform a Query<(&A, &mut B)>
to a Query<&B>
.
This can be useful for passing the query to another function. Note that since
filter terms are dropped, non-archetypal filters like Added
and
Changed
will not be respected. To maintain or change filter
terms see Self::transmute_lens_filtered
§Panics
This will panic if NewD
is not a subset of the original fetch Q
§Example
fn reusable_function(mut lens: QueryLens<&A>) {
assert_eq!(lens.query().single().unwrap().0, 10);
}
// We can use the function in a system that takes the exact query.
fn system_1(query: Query<&A>) {
reusable_function(query.into_query_lens());
}
// We can also use it with a query that does not match exactly
// by transmuting it.
fn system_2(query: Query<(&mut A, &B)>) {
let mut lens = query.transmute_lens_inner::<&A>();
reusable_function(lens);
}
§Allowed Transmutes
Besides removing parameters from the query, you can also make limited changes to the types of parameters.
- Can always add/remove
Entity
- Can always add/remove
EntityLocation
- Can always add/remove
&Archetype
Ref<T>
<->&T
&mut T
->&T
&mut T
->Ref<T>
EntityMut
->EntityRef
§See also
transmute_lens
to convert to a lens using a mutable borrow of theQuery
.
Sourcepub fn transmute_lens_filtered<NewD: QueryData, NewF: QueryFilter>(
&mut self,
) -> QueryLens<'_, NewD, NewF>
pub fn transmute_lens_filtered<NewD: QueryData, NewF: QueryFilter>( &mut self, ) -> QueryLens<'_, NewD, NewF>
Equivalent to Self::transmute_lens
but also includes a QueryFilter
type.
Note that the lens will iterate the same tables and archetypes as the original query. This means that
additional archetypal query terms like With
and Without
will not necessarily be respected and non-archetypal terms like Added
and
Changed
will only be respected if they are in the type signature.
Sourcepub fn transmute_lens_filtered_inner<NewD: QueryData, NewF: QueryFilter>(
self,
) -> QueryLens<'w, NewD, NewF>
pub fn transmute_lens_filtered_inner<NewD: QueryData, NewF: QueryFilter>( self, ) -> QueryLens<'w, NewD, NewF>
Equivalent to Self::transmute_lens_inner
but also includes a QueryFilter
type.
This consumes the Query
to return results with the actual “inner” world lifetime.
Note that the lens will iterate the same tables and archetypes as the original query. This means that
additional archetypal query terms like With
and Without
will not necessarily be respected and non-archetypal terms like Added
and
Changed
will only be respected if they are in the type signature.
§See also
transmute_lens_filtered
to convert to a lens using a mutable borrow of theQuery
.
Sourcepub fn as_query_lens(&mut self) -> QueryLens<'_, D>
pub fn as_query_lens(&mut self) -> QueryLens<'_, D>
Gets a QueryLens
with the same accesses as the existing query
Sourcepub fn into_query_lens(self) -> QueryLens<'w, D>
pub fn into_query_lens(self) -> QueryLens<'w, D>
Gets a QueryLens
with the same accesses as the existing query
§See also
as_query_lens
to convert to a lens using a mutable borrow of theQuery
.
Sourcepub fn join<'a, OtherD: QueryData, NewD: QueryData>(
&'a mut self,
other: &'a mut Query<'_, '_, OtherD>,
) -> QueryLens<'a, NewD>
pub fn join<'a, OtherD: QueryData, NewD: QueryData>( &'a mut self, other: &'a mut Query<'_, '_, OtherD>, ) -> QueryLens<'a, NewD>
Returns a QueryLens
that can be used to get a query with the combined fetch.
For example, this can take a Query<&A>
and a Query<&B>
and return a Query<(&A, &B)>
.
The returned query will only return items with both A
and B
. Note that since filters
are dropped, non-archetypal filters like Added
and Changed
will not be respected.
To maintain or change filter terms see Self::join_filtered
.
§Example
fn system(
mut transforms: Query<&Transform>,
mut players: Query<&Player>,
mut enemies: Query<&Enemy>
) {
let mut players_transforms: QueryLens<(&Transform, &Player)> = transforms.join(&mut players);
for (transform, player) in &players_transforms.query() {
// do something with a and b
}
let mut enemies_transforms: QueryLens<(&Transform, &Enemy)> = transforms.join(&mut enemies);
for (transform, enemy) in &enemies_transforms.query() {
// do something with a and b
}
}
§Panics
This will panic if NewD
is not a subset of the union of the original fetch Q
and OtherD
.
§Allowed Transmutes
Like transmute_lens
the query terms can be changed with some restrictions.
See Self::transmute_lens
for more details.
Sourcepub fn join_inner<OtherD: QueryData, NewD: QueryData>(
self,
other: Query<'w, '_, OtherD>,
) -> QueryLens<'w, NewD>
pub fn join_inner<OtherD: QueryData, NewD: QueryData>( self, other: Query<'w, '_, OtherD>, ) -> QueryLens<'w, NewD>
Returns a QueryLens
that can be used to get a query with the combined fetch.
This consumes the Query
to return results with the actual “inner” world lifetime.
For example, this can take a Query<&A>
and a Query<&B>
and return a Query<(&A, &B)>
.
The returned query will only return items with both A
and B
. Note that since filters
are dropped, non-archetypal filters like Added
and Changed
will not be respected.
To maintain or change filter terms see Self::join_filtered
.
§Panics
This will panic if NewD
is not a subset of the union of the original fetch Q
and OtherD
.
§Allowed Transmutes
Like transmute_lens
the query terms can be changed with some restrictions.
See Self::transmute_lens
for more details.
§See also
Sourcepub fn join_filtered<'a, OtherD: QueryData, OtherF: QueryFilter, NewD: QueryData, NewF: QueryFilter>(
&'a mut self,
other: &'a mut Query<'_, '_, OtherD, OtherF>,
) -> QueryLens<'a, NewD, NewF>
pub fn join_filtered<'a, OtherD: QueryData, OtherF: QueryFilter, NewD: QueryData, NewF: QueryFilter>( &'a mut self, other: &'a mut Query<'_, '_, OtherD, OtherF>, ) -> QueryLens<'a, NewD, NewF>
Equivalent to Self::join
but also includes a QueryFilter
type.
Note that the lens with iterate a subset of the original queries’ tables
and archetypes. This means that additional archetypal query terms like
With
and Without
will not necessarily be respected and non-archetypal
terms like Added
and Changed
will only be respected if they are in
the type signature.
Sourcepub fn join_filtered_inner<OtherD: QueryData, OtherF: QueryFilter, NewD: QueryData, NewF: QueryFilter>(
self,
other: Query<'w, '_, OtherD, OtherF>,
) -> QueryLens<'w, NewD, NewF>
pub fn join_filtered_inner<OtherD: QueryData, OtherF: QueryFilter, NewD: QueryData, NewF: QueryFilter>( self, other: Query<'w, '_, OtherD, OtherF>, ) -> QueryLens<'w, NewD, NewF>
Equivalent to Self::join_inner
but also includes a QueryFilter
type.
This consumes the Query
to return results with the actual “inner” world lifetime.
Note that the lens with iterate a subset of the original queries’ tables
and archetypes. This means that additional archetypal query terms like
With
and Without
will not necessarily be respected and non-archetypal
terms like Added
and Changed
will only be respected if they are in
the type signature.
§See also
join_filtered
to join using a mutable borrow of theQuery
.
Source§impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter> Query<'w, 's, D, F>
impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter> Query<'w, 's, D, F>
Sourcepub fn iter_inner(&self) -> QueryIter<'w, 's, D::ReadOnly, F> ⓘ
pub fn iter_inner(&self) -> QueryIter<'w, 's, D::ReadOnly, F> ⓘ
Returns an Iterator
over the query items, with the actual “inner” world lifetime.
This can only return immutable data (mutable data will be cast to an immutable form).
See Self::iter_mut
for queries that contain at least one mutable component.
§Example
Here, the report_names_system
iterates over the Player
component of every entity
that contains it:
fn report_names_system(query: Query<&Player>) {
for player in &query {
println!("Say hello to {}!", player.name);
}
}
Trait Implementations§
Source§impl<D: ReadOnlyQueryData, F: QueryFilter> Clone for Query<'_, '_, D, F>
impl<D: ReadOnlyQueryData, F: QueryFilter> Clone for Query<'_, '_, D, F>
Source§impl<'w, 'q, Q: QueryData, F: QueryFilter> From<&'q mut Query<'w, '_, Q, F>> for QueryLens<'q, Q, F>
impl<'w, 'q, Q: QueryData, F: QueryFilter> From<&'q mut Query<'w, '_, Q, F>> for QueryLens<'q, Q, F>
Source§impl<'w, 's, Q: QueryData, F: QueryFilter> From<&'s mut QueryLens<'w, Q, F>> for Query<'s, 's, Q, F>
impl<'w, 's, Q: QueryData, F: QueryFilter> From<&'s mut QueryLens<'w, Q, F>> for Query<'s, 's, Q, F>
Source§impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w Query<'_, 's, D, F>
impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w Query<'_, 's, D, F>
Source§impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w mut Query<'_, 's, D, F>
impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w mut Query<'_, 's, D, F>
Source§impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for Query<'w, 's, D, F>
impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for Query<'w, 's, D, F>
Source§impl<D: QueryData + 'static, F: QueryFilter + 'static> SystemParam for Query<'_, '_, D, F>
impl<D: QueryData + 'static, F: QueryFilter + 'static> SystemParam for Query<'_, '_, D, F>
Source§type State = QueryState<D, F>
type State = QueryState<D, F>
Source§type Item<'w, 's> = Query<'w, 's, D, F>
type Item<'w, 's> = Query<'w, 's, D, F>
Self
, instantiated with new lifetimes. Read moreSource§fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State
fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State
World
access used by this SystemParam
and creates a new instance of this param’s State
.Source§unsafe fn new_archetype(
state: &mut Self::State,
archetype: &Archetype,
system_meta: &mut SystemMeta,
)
unsafe fn new_archetype( state: &mut Self::State, archetype: &Archetype, system_meta: &mut SystemMeta, )
Archetype
, registers the components accessed by this SystemParam
(if applicable).a Read moreSource§unsafe fn get_param<'w, 's>(
state: &'s mut Self::State,
system_meta: &SystemMeta,
world: UnsafeWorldCell<'w>,
change_tick: Tick,
) -> Self::Item<'w, 's>
unsafe fn get_param<'w, 's>( state: &'s mut Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, change_tick: Tick, ) -> Self::Item<'w, 's>
SystemParamFunction
. Read moreSource§fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
SystemParam
’s state.
This is used to apply Commands
during ApplyDeferred
.Source§fn queue(
state: &mut Self::State,
system_meta: &SystemMeta,
world: DeferredWorld<'_>,
)
fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_>, )
ApplyDeferred
.Source§unsafe fn validate_param(
state: &Self::State,
system_meta: &SystemMeta,
world: UnsafeWorldCell<'_>,
) -> Result<(), SystemParamValidationError>
unsafe fn validate_param( state: &Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'_>, ) -> Result<(), SystemParamValidationError>
Source§impl<'w, 's, D: QueryData + 'static, F: QueryFilter + 'static, T: FnOnce(&mut QueryBuilder<'_, D, F>)> SystemParamBuilder<Query<'w, 's, D, F>> for QueryParamBuilder<T>
impl<'w, 's, D: QueryData + 'static, F: QueryFilter + 'static, T: FnOnce(&mut QueryBuilder<'_, D, F>)> SystemParamBuilder<Query<'w, 's, D, F>> for QueryParamBuilder<T>
Source§fn build(
self,
world: &mut World,
system_meta: &mut SystemMeta,
) -> QueryState<D, F>
fn build( self, world: &mut World, system_meta: &mut SystemMeta, ) -> QueryState<D, F>
World
access used by this SystemParam
and creates a new instance of this param’s State
.Source§fn build_state(self, world: &mut World) -> SystemState<P>
fn build_state(self, world: &mut World) -> SystemState<P>
SystemState
from a SystemParamBuilder
.
To create a system, call SystemState::build_system
on the result.Source§impl<'w, 's, D: QueryData + 'static, F: QueryFilter + 'static> SystemParamBuilder<Query<'w, 's, D, F>> for QueryState<D, F>
impl<'w, 's, D: QueryData + 'static, F: QueryFilter + 'static> SystemParamBuilder<Query<'w, 's, D, F>> for QueryState<D, F>
Source§fn build(
self,
world: &mut World,
system_meta: &mut SystemMeta,
) -> QueryState<D, F>
fn build( self, world: &mut World, system_meta: &mut SystemMeta, ) -> QueryState<D, F>
World
access used by this SystemParam
and creates a new instance of this param’s State
.Source§fn build_state(self, world: &mut World) -> SystemState<P>
fn build_state(self, world: &mut World) -> SystemState<P>
SystemState
from a SystemParamBuilder
.
To create a system, call SystemState::build_system
on the result.impl<D: ReadOnlyQueryData, F: QueryFilter> Copy for Query<'_, '_, D, F>
impl<'w, 's, D: ReadOnlyQueryData + 'static, F: QueryFilter + 'static> ReadOnlySystemParam for Query<'w, 's, D, F>
Auto Trait Implementations§
impl<'world, 'state, D, F> Freeze for Query<'world, 'state, D, F>
impl<'world, 'state, D, F = ()> !RefUnwindSafe for Query<'world, 'state, D, F>
impl<'world, 'state, D, F> Send for Query<'world, 'state, D, F>
impl<'world, 'state, D, F> Sync for Query<'world, 'state, D, F>
impl<'world, 'state, D, F> Unpin for Query<'world, 'state, D, F>
impl<'world, 'state, D, F = ()> !UnwindSafe for Query<'world, 'state, D, F>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
, which can then be
downcast
into Box<dyn ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
, which can then be further
downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.